Korean J healthc assoc Infect Control Prev.  2024 Dec;29(2):93-102. 10.14192/kjicp.2024.29.2.93.

Implant-associated Infections: Role of Biofilms, Diagnosis and Prevention

Affiliations
  • 1Samsung Changwon Hospital, Sungkyunkwan University, Changwon, Korea

Abstract

Implant-associated infections pose significant challenges for diagnosis and treatment due to the formation of biofilm on device surfaces. Biofilms are complex microbial communities that adhere to surfaces and are encased in a self-produced extracellular polymeric substance (EPS) matrix. Their presence on implants can lead to persistent infections, implant failure, and increased morbidity and mortality. This review explores the role of biofilms in the pathogenesis of implant-associated infections and examines current strategies for their diagnosis and prevention.

Keyword

Implant; Biofilms; Extracellular polymeric substance; Infection; Prevention

Figure

  • Fig. 1 Stages of biofilm formation.


Reference

1. Magill SS, Edwards JR, Bamberg W, Beldavs ZG, Dumyati G, Kainer MA, et al. Emerging Infections Program Healthcare-Associated Infections and Antimicrobial Use Prevalence Survey Team. 2014; Multistate point-prevalence survey of health care-associated infections. N Engl J Med. 370:1198–208. https://doi.org/10.1056/nejmoa1306801. DOI: 10.1056/NEJMoa1306801. PMID: 24670166. PMCID: PMC4648343.
2. Darouiche RO. 2004; Treatment of infections associated with surgical implants. N Engl J Med. 350:1422–9. https://doi.org/10.1056/nejmra035415. DOI: 10.1056/NEJMra035415. PMID: 15070792.
3. Sauer K, Stoodley P, Goeres DM, Hall-Stoodley L, Burmølle M, Stewart PS, et al. 2022; The biofilm life cycle: expanding the conceptual model of biofilm formation. Nat Rev Microbiol. 20:608–20. https://doi.org/10.1038/s41579-022-00767-0. DOI: 10.1038/s41579-022-00767-0. PMID: 35922483. PMCID: PMC9841534.
4. de la Fuente-Núñez C, Reffuveille F, Fernández L, Hancock RE. 2013; Bacterial biofilm development as a multicellular adaptation: antibiotic resistance and new therapeutic strategies. Curr Opin Microbiol. 16:580–9. https://doi.org/10.1016/j.mib.2013.06.013. DOI: 10.1016/j.mib.2013.06.013. PMID: 23880136.
5. Römling U, Kjelleberg S, Normark S, Nyman L, Uhlin BE, Åkerlund B. 2014; Microbial biofilm formation: a need to act. J Intern Med. 276:98–110. https://doi.org/10.1111/joim.12242. DOI: 10.1111/joim.12242. PMID: 24796496.
6. Koo H, Allan RN, Howlin RP, Stoodley P, Hall-Stoodley L. 2017; Targeting microbial biofilms: current and prospective therapeutic strategies. Nat Rev Microbiol. 15:740–55. https://doi.org/10.1038/nrmicro.2017.99. DOI: 10.1038/nrmicro.2017.99. PMID: 28944770. PMCID: PMC5685531.
7. Høiby N, Bjarnsholt T, Moser C, Bassi GL, Coenye T, Donelli G, et al. ESCMID Study Group for Biofilms and Consulting External Expert Werner Zimmerli. 2015; ESCMID guideline for the diagnosis and treatment of biofilm infections 2014. Clin Microbiol Infect. 21(Suppl 1):S1–25. https://doi.org/10.1016/j.cmi.2014.10.024. DOI: 10.1016/j.cmi.2014.10.024. PMID: 25596784.
8. Moser C, Pedersen HT, Lerche CJ, Kolpen M, Line L, Thomsen K, et al. 2017; Biofilms and host response - helpful or harmful. APMIS. 125:320–38. https://doi.org/10.1111/apm.12674. DOI: 10.1111/apm.12674. PMID: 28407429.
9. Le KY, Park MD, Otto M. 2018; Immune evasion mechanisms of Staphylococcus epidermidis biofilm infection. Front Microbiol. 9:359. https://doi.org/10.3389/fmicb.2018.00359. DOI: 10.3389/fmicb.2018.00359. PMID: 29541068. PMCID: PMC5835508.
10. Campoccia D, Mirzaei R, Montanaro L, Arciola CR. 2019; Hijacking of immune defences by biofilms: a multifront strategy. Biofouling. 35:1055–74. https://doi.org/10.1080/08927014.2019.1689964. DOI: 10.1080/08927014.2019.1689964. PMID: 31762334.
11. Hall-Stoodley L, Stoodley P, Kathju S, Høiby N, Moser C, Costerton JW, et al. 2012; Towards diagnostic guidelines for biofilm-associated infections. FEMS Immunol Med Microbiol. 65:127–45. https://doi.org/10.1111/j.1574-695x.2012.00968.x. DOI: 10.1111/j.1574-695X.2012.00968.x. PMID: 22469292.
12. Rochford ET, Richards RG, Moriarty TF. 2012; Influence of material on the development of device-associated infections. Clin Microbiol Infect. 18:1162–7. https://doi.org/10.1111/j.1469-0691.2012.04002.x. DOI: 10.1111/j.1469-0691.2012.04002.x. PMID: 22925523.
13. Ricciardi BF, Muthukrishnan G, Masters E, Ninomiya M, Lee CC, Schwarz EM. 2018; Staphylococcus aureus evasion of host immunity in the setting of prosthetic joint infection: biofilm and beyond. Curr Rev Musculoskelet Med. 11:389–400. https://doi.org/10.1007/s12178-018-9501-4. DOI: 10.1007/s12178-018-9501-4. PMID: 29987645. PMCID: PMC6105484.
14. Gheorghita AA, Wozniak DJ, Parsek MR, Howell PL. 2023; Pseudomonas aeruginosa biofilm exopolysaccharides: assembly, function, and degradation. FEMS Microbiol Rev. 47:fuad060. https://doi.org/10.1093/femsre/fuad060. DOI: 10.1093/femsre/fuad060. PMID: 37884397. PMCID: PMC10644985.
15. Arciola CR, Visai L, Testoni F, Arciola S, Campoccia D, Speziale P, et al. 2011; Concise survey of Staphylococcus aureus virulence factors that promote adhesion and damage to peri-implant tissues. Int J Artif Organs. 34:771–80. https://doi.org/10.5301/ijao.5000046. DOI: 10.5301/ijao.5000046. PMID: 22094556.
16. Gil-Perotin S, Ramirez P, Marti V, Sahuquillo JM, Gonzalez E, Calleja I, et al. 2012; Implications of endotracheal tube biofilm in ventilator-associated pneumonia response: a state of concept. Crit Care. 16:R93. https://doi.org/10.1186/cc11357. DOI: 10.1186/cc11357. PMID: 22621676. PMCID: PMC3580639.
17. Olsen I. 2015; Biofilm-specific antibiotic tolerance and resistance. Eur J Clin Microbiol Infect Dis. 34:877–86. https://doi.org/10.1007/s10096-015-2323-z. DOI: 10.1007/s10096-015-2323-z. PMID: 25630538.
18. Lebeaux D, Ghigo JM, Beloin C. 2014; Biofilm-related infections: bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. Microbiol Mol Biol Rev. 78:510–43. https://doi.org/10.1128/mmbr.00013-14. DOI: 10.1128/MMBR.00013-14. PMID: 25184564. PMCID: PMC4187679.
19. Conlon BP, Rowe SE, Lewis K. 2015; Persister cells in biofilm associated infections. Adv Exp Med Biol. 831:1–9. https://doi.org/10.1007/978-3-319-09782-4_1. DOI: 10.1007/978-3-319-09782-4_1. PMID: 25384659.
20. Ryder VJ, Chopra I, O'Neill AJ. 2012; Increased mutability of Staphylococci in biofilms as a consequence of oxidative stress. PLoS One. 7:e47695. https://doi.org/10.1371/journal.pone.0047695. DOI: 10.1371/journal.pone.0047695. PMID: 23110091. PMCID: PMC3480535.
21. Król JE, Wojtowicz AJ, Rogers LM, Heuer H, Smalla K, Krone SM, et al. 2013; Invasion of E. coli biofilms by antibiotic resistance plasmids. Plasmid. 70:110–9. https://doi.org/10.1016/j.plasmid.2013.03.003. DOI: 10.1016/j.plasmid.2013.03.003. PMID: 23558148. PMCID: PMC3687034.
22. Azad MA, Patel R. 2024; Practical guidance for clinical microbiology laboratories: microbiologic diagnosis of implant-associated infections. Clin Microbiol Rev. 37:e0010423. https://doi.org/10.1128/cmr.00104-23. DOI: 10.1128/cmr.00104-23. PMID: 38506553.
23. McNally M, Sousa R, Wouthuyzen-Bakker M, Chen AF, Soriano A, Vogely HC, et al. 2021; The EBJIS definition of periprosthetic joint infection. Bone Joint J. 103-B:18–25. https://doi.org/10.1302/0301-620x.103b1.bjj-2020-1381.r1. DOI: 10.1302/0301-620X.103B1.BJJ-2020-1381.R1. PMID: 33380199. PMCID: PMC7954183.
24. Parvizi J, Tan TL, Goswami K, Higuera C, Della Valle C, Chen AF, et al. 2018; The 2018 definition of periprosthetic hip and knee infection: an evidence-based and validated criteria. J Arthroplasty. 33:1309–14.e2. https://doi.org/10.1016/j.arth.2018.02.078. DOI: 10.1016/j.arth.2018.02.078. PMID: 29551303.
25. Talsma DT, Ploegmakers JJW, Jutte PC, Kampinga G, Wouthuyzen-Bakker M. 2021; Time to positivity of acute and chronic periprosthetic joint infection cultures. Diagn Microbiol Infect Dis. 99:115178. https://doi.org/10.1016/j.diagmicrobio.2020.115178. DOI: 10.1016/j.diagmicrobio.2020.115178. PMID: 33017799.
26. Oliva A, Miele MC, Al Ismail D, Di Timoteo F, De Angelis M, Rosa L, et al. 2021; Challenges in the microbiological diagnosis of implant-associated infections: a summary of the current knowledge. Front Microbiol. 12:750460. https://doi.org/10.3389/fmicb.2021.750460. DOI: 10.3389/fmicb.2021.750460. PMID: 34777301. PMCID: PMC8586543.
27. Xu Y, Larsen LH, Lorenzen J, Hall-Stoodley L, Kikhney J, Moter A, et al. 2017; Microbiological diagnosis of device-related biofilm infections. APMIS. 125:289–303. https://doi.org/10.1111/apm.12676. DOI: 10.1111/apm.12676. PMID: 28407422.
28. Li L, Mendis N, Trigui H, Oliver JD, Faucher SP. 2014; The importance of the viable but non-culturable state in human bacterial pathogens. Front Microbiol. 5:258. https://doi.org/10.3389/fmicb.2014.00258. DOI: 10.3389/fmicb.2014.00258.
29. Pasquaroli S, Zandri G, Vignaroli C, Vuotto C, Donelli G, Biavasco F. 2013; Antibiotic pressure can induce the viable but non-culturable state in Staphylococcus aureus growing in biofilms. J Antimicrob Chemother. 68:1812–7. https://doi.org/10.1093/jac/dkt086. DOI: 10.1093/jac/dkt086. PMID: 23515246.
30. Maduka-Ezeh AN, Greenwood-Quaintance KE, Karau MJ, Berbari EF, Osmon DR, Hanssen AD, et al. 2012; Antimicrobial susceptibility and biofilm formation of Staphylococcus epidermidis small colony variants associated with prosthetic joint infection. Diagn Microbiol Infect Dis. 74:224–9. https://doi.org/10.1016/j.diagmicrobio.2012.06.029. DOI: 10.1016/j.diagmicrobio.2012.06.029. PMID: 22901790.
31. Tuchscherr L, Heitmann V, Hussain M, Viemann D, Roth J, von Eiff C, et al. 2010; Staphylococcus aureus small-colony variants are adapted phenotypes for intracellular persistence. J Infect Dis. 202:1031–40. https://doi.org/10.1086/656047. DOI: 10.1086/656047. PMID: 20715929.
32. Tan TL, Kheir MM, Shohat N, Tan DD, Kheir M, Chen C, et al. 2018; Culture-negative periprosthetic joint infection: an update on what to expect. JB JS Open Access. 3:e0060. https://doi.org/10.2106/jbjs.oa.17.00060. DOI: 10.2106/JBJS.OA.17.00060. PMID: 30533595. PMCID: PMC6242327.
33. Berbari EF, Marculescu C, Sia I, Lahr BD, Hanssen AD, Steckelberg JM, et al. 2007; Culture-negative prosthetic joint infection. Clin Infect Dis. 45:1113–9. https://doi.org/10.1086/522184. DOI: 10.1086/522184. PMID: 17918072.
34. Trampuz A, Piper KE, Jacobson MJ, Hanssen AD, Unni KK, Osmon DR, et al. 2007; Sonication of removed hip and knee prostheses for diagnosis of infection. N Engl J Med. 357:654–63. https://doi.org/10.1056/nejmoa061588. DOI: 10.1056/NEJMoa061588. PMID: 17699815.
35. Flurin L, Greenwood-Quaintance KE, Esper RN, Sanchez-Sotelo J, Patel R. 2021; Sonication improves microbiologic diagnosis of periprosthetic elbow infection. J Shoulder Elbow Surg. 30:1741–9. https://doi.org/10.1016/j.jse.2021.01.023. DOI: 10.1016/j.jse.2021.01.023. PMID: 33609642. PMCID: PMC8319056.
36. Peel TN, Dylla BL, Hughes JG, Lynch DT, Greenwood-Quaintance KE, Cheng AC, et al. 2016; Improved diagnosis of prosthetic joint infection by culturing periprosthetic tissue specimens in blood culture bottles. mBio. 7:e01776–15. https://doi.org/10.1128/mbio.01776-15. DOI: 10.1128/mBio.01776-15. PMID: 26733067. PMCID: PMC4725002.
37. Gomez E, Cazanave C, Cunningham SA, Greenwood-Quaintance KE, Steckelberg JM, Uhl JR, et al. 2012; Prosthetic joint infection diagnosis using broad-range PCR of biofilms dislodged from knee and hip arthroplasty surfaces using sonication. J Clin Microbiol. 50:3501–8. https://doi.org/10.1128/jcm.00834-12. DOI: 10.1128/JCM.00834-12. PMID: 22895042. PMCID: PMC3486250.
38. Liesman RM, Pritt BS, Maleszewski JJ, Patel R. 2017; Laboratory diagnosis of infective endocarditis. J Clin Microbiol. 55:2599–608. https://doi.org/10.1128/jcm.00635-17. DOI: 10.1128/JCM.00635-17. PMID: 28659319. PMCID: PMC5648697.
39. Tarabichi M, Shohat N, Goswami K, Alvand A, Silibovsky R, Belden K, et al. 2018; Diagnosis of periprosthetic joint infection: the potential of next-generation sequencing. J Bone Joint Surg Am. 100:147–54. https://doi.org/10.2106/jbjs.17.00434. DOI: 10.2106/JBJS.17.00434. PMID: 29342065.
40. Hong HL, Flurin L, Thoendel MJ, Wolf MJ, Abdel MP, Greenwood-Quaintance KE, et al. 2023; Targeted versus shotgun metagenomic sequencing-based detection of microorganisms in sonicate fluid for periprosthetic joint infection diagnosis. Clin Infect Dis. 76:e1456–62. https://doi.org/10.1093/cid/ciac646. DOI: 10.1093/cid/ciac646. PMID: 35944127. PMCID: PMC10169413.
41. Anagnostopoulos A, Mayer F, Ledergerber B, Bergadà-Pijuan J, Husmann L, Mestres CA, et al. VASGRA Cohort Study. 2021; Editor's choice - Validation of the management of aortic graft infection collaboration (MAGIC) criteria for the diagnosis of vascular graft/endograft infection: results from the prospective vascular graft cohort study. Eur J Vasc Endovasc Surg. 62:251–7. https://doi.org/10.1016/j.ejvs.2021.05.010. DOI: 10.1016/j.ejvs.2021.05.010. PMID: 34140225.
42. van Oosten M, Hahn M, Crane LM, Pleijhuis RG, Francis KP, van Dijl JM, et al. 2015; Targeted imaging of bacterial infections: advances, hurdles and hopes. FEMS Microbiol Rev. 39:892–916. https://doi.org/10.1093/femsre/fuv029. DOI: 10.1093/femsre/fuv029. PMID: 26109599.
43. Pijl JP, Kwee TC, Slart RHJA, Glaudemans AWJM. 2021; PET/CT imaging for personalized management of infectious diseases. J Pers Med. 11:133. https://doi.org/10.3390/jpm11020133. DOI: 10.3390/jpm11020133. PMID: 33669375. PMCID: PMC7920259.
44. Stoodley P, Nistico L, Johnson S, Lasko LA, Baratz M, Gahlot V, et al. 2008; Direct demonstration of viable Staphylococcus aureus biofilms in an infected total joint arthroplasty. A case report. J Bone Joint Surg Am. 90:1751–8. https://doi.org/10.2106/jbjs.g.00838. DOI: 10.2106/JBJS.G.00838. PMID: 18676908. PMCID: PMC2729478.
45. Walker JT, Verran J, Boyd RD, Percival S. 2001; Microscopy methods to investigate structure of potable water biofilms. Methods Enzymol. 337:243–55. https://doi.org/10.1016/s0076-6879(01)37018-0. DOI: 10.1016/S0076-6879(01)37018-0. PMID: 11398433.
46. Peterson LR, Smith BA. 2015; Nonutility of catheter tip cultures for the diagnosis of central line-associated bloodstream infection. Clin Infect Dis. 60:492–3. https://doi.org/10.1093/cid/ciu845. DOI: 10.1093/cid/ciu845. PMID: 25355902.
47. Bratzler DW, Dellinger EP, Olsen KM, Perl TM, Auwaerter PG, Bolon MK, et al. 2013; Clinical practice guidelines for antimicrobial prophylaxis in surgery. Am J Health Syst Pharm. 70:195–283. https://doi.org/10.2146/ajhp120568. DOI: 10.2146/ajhp120568. PMID: 23327981.
48. 2020; Practice guidelines for central venous access 2020: an updated report by the American Society of Anesthesiologists Task Force on Central Venous Access. Anesthesiology. 132:8–43. https://doi.org/10.1097/aln.0000000000002864. DOI: 10.1097/ALN.0000000000002864. PMID: 31821240.
49. Wi YM, Patel R. 2018; Understanding biofilms and novel approaches to the diagnosis, prevention, and treatment of medical device-associated infections. Infect Dis Clin North Am. 32:915–29. https://doi.org/10.1016/j.idc.2018.06.009. DOI: 10.1016/j.idc.2018.06.009. PMID: 30241715. PMCID: PMC6215726.
50. Darouiche RO, Raad II, Heard SO, Thornby JI, Wenker OC, Gabrielli A, et al. 1999; A comparison of two antimicrobial-impregnated central venous catheters. Catheter Study Group. N Engl J Med. 340:1–8. https://doi.org/10.1056/nejm199901073400101. DOI: 10.1056/NEJM199901073400101. PMID: 9878638.
51. Marciante KD, Veenstra DL, Lipsky BA, Saint S. 2003; Which antimicrobial impregnated central venous catheter should we use? Modeling the costs and outcomes of antimicrobial catheter use. Am J Infect Control. 31:1–8. https://doi.org/10.1067/mic.2003.35. DOI: 10.1067/mic.2003.35. PMID: 12548250.
52. Rupp ME, Lisco SJ, Lipsett PA, Perl TM, Keating K, Civetta JM, et al. 2005; Effect of a second-generation venous catheter impregnated with chlorhexidine and silver sulfadiazine on central catheter-related infections: a randomized, controlled trial. Ann Intern Med. 143:570–80. https://doi.org/10.7326/0003-4819-143-8-200510180-00007. DOI: 10.7326/0003-4819-143-8-200510180-00007. PMID: 16230723.
53. Kollef MH, Afessa B, Anzueto A, Veremakis C, Kerr KM, Margolis BD, et al. NASCENT Investigation Group. 2008; Silver-coated endotracheal tubes and incidence of ventilator-associated pneumonia: the NASCENT randomized trial. JAMA. 300:805–13. https://doi.org/10.1001/jama.300.7.805. DOI: 10.1001/jama.300.7.805. PMID: 18714060.
54. Ismat A, Walter N, Baertl S, Mika J, Lang S, Kerschbaum M, et al. 2021; Antibiotic cement coating in orthopedic surgery: a systematic review of reported clinical techniques. J Orthop Traumatol. 22:56. https://doi.org/10.1186/s10195-021-00614-7. DOI: 10.1186/s10195-021-00614-7. PMID: 34940945. PMCID: PMC8702599.
55. Curtin JJ, Donlan RM. 2006; Using bacteriophages to reduce formation of catheter-associated biofilms by Staphylococcus epidermidis. Antimicrob Agents Chemother. 50:1268–75. https://doi.org/10.1128/aac.50.4.1268-1275.2006. DOI: 10.1128/AAC.50.4.1268-1275.2006. PMID: 16569839. PMCID: PMC1426991.
56. Fu W, Forster T, Mayer O, Curtin JJ, Lehman SM, Donlan RM. 2010; Bacteriophage cocktail for the prevention of biofilm formation by Pseudomonas aeruginosa on catheters in an in vitro model system. Antimicrob Agents Chemother. 54:397–404. https://doi.org/10.1128/aac.00669-09. DOI: 10.1128/AAC.00669-09. PMID: 19822702. PMCID: PMC2798481.
57. Akanda ZZ, Taha M, Abdelbary H. 2018; Current review-The rise of bacteriophage as a unique therapeutic platform in treating peri-prosthetic joint infections. J Orthop Res. 36:1051–60. https://doi.org/10.1002/jor.23755. DOI: 10.1002/jor.23755. PMID: 28971508.
58. Doub JB, Urish K, Chan B. 2023; Bacteriophage therapy for periprosthetic joint infections: current limitations and research needed to advance this therapeutic. J Orthop Res. 41:1097–104. https://doi.org/10.1002/jor.25432. DOI: 10.1002/jor.25432. PMID: 36031587.
59. Swartjes JJ, Sharma PK, van Kooten TG, van der Mei HC, Mahmoudi M, Busscher HJ, et al. 2015; Current developments in antimicrobial surface coatings for biomedical applications. Curr Med Chem. 22:2116–29. https://doi.org/10.2174/0929867321666140916121355. DOI: 10.2174/0929867321666140916121355. PMID: 25245508.
60. May RM, Magin CM, Mann EE, Drinker MC, Fraser JC, Siedlecki CA, et al. 2015; An engineered micropattern to reduce bacterial colonization, platelet adhesion and fibrin sheath formation for improved biocompatibility of central venous catheters. Clin Transl Med. 4:9. https://doi.org/10.1186/s40169-015-0050-9. DOI: 10.1186/s40169-015-0050-9. PMID: 25852825. PMCID: PMC4385044.
61. Berra L, Coppadoro A, Bittner EA, Kolobow T, Laquerriere P, Pohlmann JR, et al. 2012; A clinical assessment of the Mucus Shaver: a device to keep the endotracheal tube free from secretions. Crit Care Med. 40:119–24. https://doi.org/10.1097/ccm.0b013e31822e9fe3. DOI: 10.1097/CCM.0b013e31822e9fe3. PMID: 21926595. PMCID: PMC3405906.
62. Machado MC, Tarquinio KM, Webster TJ. 2012; Decreased Staphylococcus aureus biofilm formation on nanomodified endotracheal tubes: a dynamic airway model. Int J Nanomedicine. 7:3741–50. https://doi.org/10.2147/ijn.s28191. DOI: 10.2147/IJN.S28191. PMID: 22904622. PMCID: PMC3418105.
63. Machado MC, Webster TJ. 2016; Decreased Pseudomonas aeruginosa biofilm formation on nanomodified endotracheal tubes: a dynamic lung model. Int J Nanomedicine. 11:3825–31. https://doi.org/10.2147/ijn.s108253. DOI: 10.2147/IJN.S108253. PMID: 27563242. PMCID: PMC4984988.
64. Sultana ST, Call DR, Beyenal H. 2016; Eradication of Pseudomonas aeruginosa biofilms and persister cells using an electrochemical scaffold and enhanced antibiotic susceptibility. NPJ Biofilms Microbiomes. 2:2. https://doi.org/10.1038/s41522-016-0003-0. DOI: 10.1038/s41522-016-0003-0. PMID: 28649396. PMCID: PMC5460242.
65. Schmidt-Malan SM, Karau MJ, Cede J, Greenwood-Quaintance KE, Brinkman CL, Mandrekar JN, et al. 2015; Antibiofilm activity of low-amperage continuous and intermittent direct electrical current. Antimicrob Agents Chemother. 59:4610–5. https://doi.org/10.1128/aac.00483-15. DOI: 10.1128/AAC.00483-15. PMID: 26014944. PMCID: PMC4505246.
66. Roy R, Tiwari M, Donelli G, Tiwari V. 2018; Strategies for combating bacterial biofilms: a focus on anti-biofilm agents and their mechanisms of action. Virulence. 9:522–54. https://doi.org/10.1080/21505594.2017.1313372. DOI: 10.1080/21505594.2017.1313372. PMID: 28362216. PMCID: PMC5955472.
67. Rémy B, Mion S, Plener L, Elias M, Chabrière E, Daudé D. 2018; Interference in bacterial quorum sensing: a biopharmaceutical perspective. Front Pharmacol. 9:203. https://doi.org/10.3389/fphar.2018.00203. DOI: 10.3389/fphar.2018.00203. PMID: 29563876. PMCID: PMC5845960.
68. Brackman G, Coenye T. 2015; Quorum sensing inhibitors as anti-biofilm agents. Curr Pharm Des. 21:5–11. https://doi.org/10.2174/1381612820666140905114627. DOI: 10.2174/1381612820666140905114627. PMID: 25189863.
69. Dong J, Wang W, Zhou W, Zhang S, Li M, Li N, et al. 2022; Immunomodulatory biomaterials for implant-associated infections: from conventional to advanced therapeutic strategies. Biomater Res. 26:72. https://doi.org/10.1186/s40824-022-00326-x. DOI: 10.1186/s40824-022-00326-x. PMID: 36471454. PMCID: PMC9721013.
Full Text Links
  • KJHAICP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2025 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr