Korean J Physiol Pharmacol.  2025 Jan;29(1):1-8. 10.4196/kjpp.24.388.

Brain energy homeostasis: the evolution of the astrocyte-neuron lactate shuttle hypothesis

Affiliations
  • 1Department of Physiology, Ajou University School of Medicine, Suwon 16499, Korea

Abstract

The brain’s substantial metabolic requirements, consuming a substantial fraction of the body’s total energy despite its relatively small mass, necessitate sophisticated metabolic mechanisms for efficient energy distribution and utilization. The astrocyte-neuron lactate shuttle (ANLS) hypothesis has emerged as a fundamental framework explaining the metabolic cooperation between astrocytes and neurons, whereby astrocyte-derived lactate serves as a crucial energy substrate for neurons. This review synthesizes current understanding of brain energy metabolism, focusing on the dual roles of lactate as both an energy substrate and a signaling molecule. We examine the molecular underpinnings of metabolic compartmentalization, particularly the differential expression of lactate dehydrogenase (LDH) isozymes between astrocytes and neurons, which facilitates directional lactate flux. Recent evidence has challenged aspects of the classical ANLS model, revealing greater metabolic flexibility in neurons than previously recognized, including substantial LDHA expression and direct glucose utilization capabilities. Our recent studies on LDHB-deficient neurons provide new insights into the compensatory mechanisms and limitations of neuronal lactate metabolism, suggesting a more nuanced understanding of the ANLS hypothesis. Furthermore, we discuss lactate’s emerging role as a signaling molecule in synaptic plasticity, memory formation, and neuroprotection, particularly in ischemic conditions where elevated lactate levels correlate with enhanced neuronal survival through prostaglandin E 2 -mediated vasodilation. This comprehensive review integrates classical perspectives with recent advances, providing an updated framework for understanding brain lactate metabolism and its therapeutic implications in neurological disorders.

Keyword

Brain; Energy metabolism; Lactic acid; L-lactate dehydrogenase; Neuron

Figure

  • Fig. 1 Evolution of astrocyte-neuron lactate shuttle (ANLS) hypothesis. (A) Traditional model: The classic ANLS hypothesis proposes that neurons depend primarily on lactate produced by astrocytes for energy metabolism. This model assumes strict metabolic compartmentalization, with neurons exclusively expressing the LDH1 (LDHB) isozyme. (B) Updated model: The revised ANLS hypothesis demonstrates that neurons possess greater metabolic flexibility through the expression of both LDHA and LDHB. While neurons maintain their ability to utilize lactate, they do so less efficiently through LDHA compared to LDHB. LDH, lactate dehydrogenase; MCT, monocarboxylate transporter; GLUT, glucose transporter.

  • Fig. 2 Mechanism of lactate-induced cerebral vasodilation. Lactate in the extracellular space enhances vasodilation through its interaction with prostaglandin E2 (PGE2) signaling. This occurs when lactate inhibits the prostaglandin transporter (PGT), which prevents astrocytes from taking up and degrading PGE2, thereby prolonging PGE2-mediated vasodilatory effects. AA, arachidonic acid.


Reference

1. Li S, Sheng ZH. 2022; Energy matters: presynaptic metabolism and the maintenance of synaptic transmission. Nat Rev Neurosci. 23:4–22. DOI: 10.1038/s41583-021-00535-8. PMID: 34782781.
Article
2. Bélanger M, Allaman I, Magistretti PJ. 2011; Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab. 14:724–738. DOI: 10.1016/j.cmet.2011.08.016. PMID: 22152301.
Article
3. Chen Z, Zhong C. 2013; Decoding Alzheimer's disease from perturbed cerebral glucose metabolism: implications for diagnostic and therapeutic strategies. Prog Neurobiol. 108:21–43. DOI: 10.1016/j.pneurobio.2013.06.004. PMID: 23850509.
Article
4. Marcus C, Mena E, Subramaniam RM. 2014; Brain PET in the diagnosis of Alzheimer's disease. Clin Nucl Med. 39:e413–422. quiz e423-416. DOI: 10.1097/RLU.0000000000000547. PMID: 25199063. PMCID: PMC4332800.
Article
5. Rama Rao KV, Norenberg MD. 2012; Brain energy metabolism and mitochondrial dysfunction in acute and chronic hepatic encephalopathy. Neurochem Int. 60:697–706. DOI: 10.1016/j.neuint.2011.09.007. PMID: 21989389. PMCID: PMC4714837.
Article
6. Vandoorne T, De Bock K, Van Den Bosch L. 2018; Energy metabolism in ALS: an underappreciated opportunity? Acta Neuropathol. 135:489–509. DOI: 10.1007/s00401-018-1835-x. PMID: 29549424. PMCID: PMC5978930.
Article
7. Boison D, Steinhäuser C. 2018; Epilepsy and astrocyte energy metabolism. Glia. 66:1235–1243. DOI: 10.1002/glia.23247. PMID: 29044647. PMCID: PMC5903956.
Article
8. Faria-Pereira A, Morais VA. 2022; Synapses: the brain's energy-demanding sites. Int J Mol Sci. 23:3627. DOI: 10.3390/ijms23073627. PMID: 35408993. PMCID: PMC8998888.
Article
9. Magistretti PJ, Allaman I. 2018; Lactate in the brain: from metabolic end-product to signalling molecule. Nat Rev Neurosci. 19:235–249. DOI: 10.1038/nrn.2018.19. PMID: 29515192.
Article
10. García-Rodríguez D, Giménez-Cassina A. 2021; Ketone bodies in the brain beyond fuel metabolism: from excitability to gene expression and cell signaling. Front Mol Neurosci. 14:732120. DOI: 10.3389/fnmol.2021.732120. PMID: 34512261. PMCID: PMC8429829.
Article
11. Puchalska P, Crawford PA. 2017; Multi-dimensional roles of ketone bodies in fuel metabolism, signaling, and therapeutics. Cell Metab. 25:262–284. DOI: 10.1016/j.cmet.2016.12.022. PMID: 28178565. PMCID: PMC5313038.
Article
12. Brooks GA. 2018; The science and translation of lactate shuttle theory. Cell Metab. 27:757–785. DOI: 10.1016/j.cmet.2018.03.008. PMID: 29617642.
Article
13. Dienel GA. 2012; Brain lactate metabolism: the discoveries and the controversies. J Cereb Blood Flow Metab. 32:1107–1138. DOI: 10.1038/jcbfm.2011.175. PMID: 22186669. PMCID: PMC3390802.
Article
14. Wu A, Lee D, Xiong WC. 2023; Lactate metabolism, signaling, and function in brain development, synaptic plasticity, angiogenesis, and neurodegenerative diseases. Int J Mol Sci. 24:13398. DOI: 10.3390/ijms241713398. PMID: 37686202. PMCID: PMC10487923.
Article
15. Li R, Yang Y, Wang H, Zhang T, Duan F, Wu K, Yang S, Xu K, Jiang X, Sun X. 2023; Lactate and lactylation in the brain: current progress and perspectives. Cell Mol Neurobiol. 43:2541–2555. DOI: 10.1007/s10571-023-01335-7. PMID: 36928470.
Article
16. Patet C, Suys T, Carteron L, Oddo M. 2016; Cerebral lactate metabolism after traumatic brain injury. Curr Neurol Neurosci Rep. 16:31. DOI: 10.1007/s11910-016-0638-5. PMID: 26898683.
Article
17. Cai M, Wang H, Song H, Yang R, Wang L, Xue X, Sun W, Hu J. 2022; Lactate is answerable for brain function and treating brain diseases: energy substrates and signal molecule. Front Nutr. 9:800901. DOI: 10.3389/fnut.2022.800901. PMID: 35571940. PMCID: PMC9099001.
Article
18. Attwell D, Laughlin SB. 2001; An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab. 21:1133–1145. DOI: 10.1097/00004647-200110000-00001. PMID: 11598490.
Article
19. Harris JJ, Jolivet R, Attwell D. 2012; Synaptic energy use and supply. Neuron. 75:762–777. DOI: 10.1016/j.neuron.2012.08.019. PMID: 22958818.
Article
20. Mergenthaler P, Lindauer U, Dienel GA, Meisel A. 2013; Sugar for the brain: the role of glucose in physiological and pathological brain function. Trends Neurosci. 36:587–597. DOI: 10.1016/j.tins.2013.07.001. PMID: 23968694. PMCID: PMC3900881.
Article
21. Chan DC. 2006; Mitochondria: dynamic organelles in disease, aging, and development. Cell. 125:1241–1252. DOI: 10.1016/j.cell.2006.06.010. PMID: 16814712.
Article
22. Mattson MP, Gleichmann M, Cheng A. 2008; Mitochondria in neuroplasticity and neurological disorders. Neuron. 60:748–766. DOI: 10.1016/j.neuron.2008.10.010. PMID: 19081372. PMCID: PMC2692277.
Article
23. Hall CN, Klein-Flügge MC, Howarth C, Attwell D. 2012; Oxidative phosphorylation, not glycolysis, powers presynaptic and postsynaptic mechanisms underlying brain information processing. J Neurosci. 32:8940–8951. DOI: 10.1523/JNEUROSCI.0026-12.2012. PMID: 22745494. PMCID: PMC3390246.
Article
24. Lin MT, Beal MF. 2006; Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature. 443:787–795. DOI: 10.1038/nature05292. PMID: 17051205.
Article
25. Schon EA, Przedborski S. 2011; Mitochondria: the next (neurode)generation. Neuron. 70:1033–1053. DOI: 10.1016/j.neuron.2011.06.003. PMID: 21689593. PMCID: PMC3407575.
Article
26. Johri A, Beal MF. 2012; Mitochondrial dysfunction in neurodegenerative diseases. J Pharmacol Exp Ther. 342:619–630. DOI: 10.1124/jpet.112.192138. PMID: 22700435. PMCID: PMC3422529.
Article
27. Grimm A, Eckert A. 2017; Brain aging and neurodegeneration: from a mitochondrial point of view. J Neurochem. 143:418–431. DOI: 10.1111/jnc.14037. PMID: 28397282. PMCID: PMC5724505.
Article
28. Bishop NA, Lu T, Yankner BA. 2010; Neural mechanisms of ageing and cognitive decline. Nature. 464:529–535. DOI: 10.1038/nature08983. PMID: 20336135. PMCID: PMC2927852.
Article
29. Duchen MR. 2000; Mitochondria and calcium: from cell signalling to cell death. J Physiol. 529(Pt 1):57–68. DOI: 10.1111/j.1469-7793.2000.00057.x. PMID: 11080251. PMCID: PMC2270168.
Article
30. Murphy MP. 2009; How mitochondria produce reactive oxygen species. Biochem J. 417:1–13. DOI: 10.1042/BJ20081386. PMID: 19061483. PMCID: PMC2605959.
Article
31. Rizzuto R, De Stefani D, Raffaello A, Mammucari C. 2012; Mitochondria as sensors and regulators of calcium signalling. Nat Rev Mol Cell Biol. 13:566–578. DOI: 10.1038/nrm3412. PMID: 22850819.
Article
32. Youle RJ, van der Bliek AM. 2012; Mitochondrial fission, fusion, and stress. Science. 337:1062–1065. DOI: 10.1126/science.1219855. PMID: 22936770. PMCID: PMC4762028.
Article
33. Chen H, Chan DC. 2009; Mitochondrial dynamics--fusion, fission, movement, and mitophagy--in neurodegenerative diseases. Hum Mol Genet. 18:R169–176. DOI: 10.1093/hmg/ddp326. PMID: 19808793. PMCID: PMC2758711.
Article
34. Saxton WM, Hollenbeck PJ. 2012; The axonal transport of mitochondria. J Cell Sci. 125:2095–2104. DOI: 10.1242/jcs.053850. PMID: 22619228. PMCID: PMC3656622.
Article
35. Sheng ZH, Cai Q. 2012; Mitochondrial transport in neurons: impact on synaptic homeostasis and neurodegeneration. Nat Rev Neurosci. 13:77–93. DOI: 10.1038/nrn3156. PMID: 22218207. PMCID: PMC4962561.
Article
36. Pellerin L, Magistretti PJ. 1994; Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci U S A. 91:10625–10629. DOI: 10.1073/pnas.91.22.10625. PMID: 7938003. PMCID: PMC45074.
Article
37. Mason S. 2017; Lactate shuttles in neuroenergetics-homeostasis, allostasis and beyond. Front Neurosci. 11:43. DOI: 10.3389/fnins.2017.00043. PMID: 28210209. PMCID: PMC5288365.
Article
38. Abbott NJ, Rönnbäck L, Hansson E. 2006; Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci. 7:41–53. DOI: 10.1038/nrn1824. PMID: 16371949.
Article
39. Halestrap AP. 2013; Monocarboxylic acid transport. Compr Physiol. 3:1611–1643. DOI: 10.1002/cphy.c130008. PMID: 24265240.
Article
40. Mongeon R, Venkatachalam V, Yellen G. 2016; Cytosolic NADH-NAD(+) redox visualized in brain slices by two-photon fluorescence lifetime biosensor imaging. Antioxid Redox Signal. 25:553–563. DOI: 10.1089/ars.2015.6593. PMID: 26857245. PMCID: PMC5041510.
Article
41. Cholet N, Pellerin L, Welker E, Lacombe P, Seylaz J, Magistretti P, Bonvento G. 2001; Local injection of antisense oligonucleotides targeted to the glial glutamate transporter GLAST decreases the metabolic response to somatosensory activation. J Cereb Blood Flow Metab. 21:404–412. DOI: 10.1097/00004647-200104000-00009. PMID: 11323526.
Article
42. Voutsinos-Porche B, Knott G, Tanaka K, Quairiaux C, Welker E, Bonvento G. 2003; Glial glutamate transporters and maturation of the mouse somatosensory cortex. Cereb Cortex. 13:1110–1121. DOI: 10.1093/cercor/13.10.1110. PMID: 12967927.
Article
43. Rouach N, Koulakoff A, Abudara V, Willecke K, Giaume C. 2008; Astroglial metabolic networks sustain hippocampal synaptic transmission. Science. 322:1551–1555. DOI: 10.1126/science.1164022. PMID: 19056987.
Article
44. Sada N, Lee S, Katsu T, Otsuki T, Inoue T. 2015; Epilepsy treatment. Targeting LDH enzymes with a stiripentol analog to treat epilepsy. Science. 347:1362–1367. DOI: 10.1126/science.aaa1299. PMID: 25792327.
Article
45. Newington JT, Harris RA, Cumming RC. 2013; Reevaluating metabolism in Alzheimer's disease from the perspective of the astrocyte-neuron lactate shuttle model. J Neurodegener Dis. 2013:234572. DOI: 10.1155/2013/234572. PMID: 26316984. PMCID: PMC4437330.
Article
46. Boussicault L, Hérard AS, Calingasan N, Petit F, Malgorn C, Merienne N, Jan C, Gaillard MC, Lerchundi R, Barros LF, Escartin C, Delzescaux T, Mariani J, Hantraye P, Beal MF, Brouillet E, Véga C, Bonvento G. 2014; Impaired brain energy metabolism in the BACHD mouse model of Huntington's disease: critical role of astrocyte-neuron interactions. J Cereb Blood Flow Metab. 34:1500–1510. DOI: 10.1038/jcbfm.2014.110. PMID: 24938402. PMCID: PMC4158666.
Article
47. Ferraiuolo L, Higginbottom A, Heath PR, Barber S, Greenald D, Kirby J, Shaw PJ. 2011; Dysregulation of astrocyte-motoneuron cross-talk in mutant superoxide dismutase 1-related amyotrophic lateral sclerosis. Brain. 134:2627–2641. DOI: 10.1093/brain/awr193. PMID: 21908873. PMCID: PMC3170534.
Article
48. Vezzani A, Ravizza T, Bedner P, Aronica E, Steinhäuser C, Boison D. 2022; Astrocytes in the initiation and progression of epilepsy. Nat Rev Neurol. 18:707–722. DOI: 10.1038/s41582-022-00727-5. PMID: 36280704. PMCID: PMC10368155.
Article
49. Carrard A, Elsayed M, Margineanu M, Boury-Jamot B, Fragnière L, Meylan EM, Petit JM, Fiumelli H, Magistretti PJ, Martin JL. 2018; Peripheral administration of lactate produces antidepressant-like effects. Mol Psychiatry. 23:392–399. Erratum in: Mol Psychiatry. 2018;23:488. DOI: 10.1038/mp.2016.179. PMID: 27752076. PMCID: PMC5794893.
Article
50. Steullet P, Cabungcal JH, Coyle J, Didriksen M, Gill K, Grace AA, Hensch TK, LaMantia AS, Lindemann L, Maynard TM, Meyer U, Morishita H, O'Donnell P, Puhl M, Cuenod M, Do KQ. 2017; Oxidative stress-driven parvalbumin interneuron impairment as a common mechanism in models of schizophrenia. Mol Psychiatry. 22:936–943. DOI: 10.1038/mp.2017.47. PMID: 28322275. PMCID: PMC5491690.
Article
51. Farhana A, Lappin SL. 2020. Biochemistry, lactate dehydrogenase. StatPearls Publishing.
52. Farhana A, Lappin SL. 2023. Biochemistry, lactate dehydrogenase. StatPearls Publishing.
53. Read JA, Winter VJ, Eszes CM, Sessions RB, Brady RL. 2001; Structural basis for altered activity of M- and H-isozyme forms of human lactate dehydrogenase. Proteins. 43:175–185. DOI: 10.1002/1097-0134(20010501)43:2<175::AID-PROT1029>3.0.CO;2-#. PMID: 11276087.
Article
54. Quistorff B, Grunnet N. 2011; The isoenzyme pattern of LDH does not play a physiological role; except perhaps during fast transitions in energy metabolism. Aging (Albany NY). 3:457–460. DOI: 10.18632/aging.100329. PMID: 21566263. PMCID: PMC3156596.
Article
55. Dawson DM, Goodfriend TL, Kaplan NO. 1964; Lactic dehydrogenases: functions of the two types rates of synthesis of the two major forms can be correlated with metabolic differentiation. Science. 143:929–933. DOI: 10.1126/science.143.3609.929. PMID: 14090142.
56. Brooks GA. 2009; Cell-cell and intracellular lactate shuttles. J Physiol. 587:5591–5600. DOI: 10.1113/jphysiol.2009.178350. PMID: 19805739. PMCID: PMC2805372.
Article
57. Ross JM, Öberg J, Brené S, Coppotelli G, Terzioglu M, Pernold K, Goiny M, Sitnikov R, Kehr J, Trifunovic A, Larsson NG, Hoffer BJ, Olson L. 2010; High brain lactate is a hallmark of aging and caused by a shift in the lactate dehydrogenase A/B ratio. Proc Natl Acad Sci U S A. 107:20087–20092. DOI: 10.1073/pnas.1008189107. PMID: 21041631. PMCID: PMC2993405.
Article
58. Valvona CJ, Fillmore HL, Nunn PB, Pilkington GJ. 2016; The regulation and function of lactate dehydrogenase a: therapeutic potential in brain tumor. Brain Pathol. 26:3–17. DOI: 10.1111/bpa.12299. PMID: 26269128. PMCID: PMC8029296.
Article
59. Bittar PG, Charnay Y, Pellerin L, Bouras C, Magistretti PJ. 1996; Selective distribution of lactate dehydrogenase isoenzymes in neurons and astrocytes of human brain. J Cereb Blood Flow Metab. 16:1079–1089. DOI: 10.1097/00004647-199611000-00001. PMID: 8898679.
Article
60. Laughton JD, Bittar P, Charnay Y, Pellerin L, Kovari E, Magistretti PJ, Bouras C. 2007; Metabolic compartmentalization in the human cortex and hippocampus: evidence for a cell- and region-specific localization of lactate dehydrogenase 5 and pyruvate dehydrogenase. BMC Neurosci. 8:35. DOI: 10.1186/1471-2202-8-35. PMID: 17521432. PMCID: PMC1899510.
Article
61. Pellerin L, Magistretti PJ. 2012; Sweet sixteen for ANLS. J Cereb Blood Flow Metab. 32:1152–1166. DOI: 10.1038/jcbfm.2011.149. PMID: 22027938. PMCID: PMC3390819.
Article
62. Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL, Christopherson KS, Xing Y, Lubischer JL, Krieg PA, Krupenko SA, Thompson WJ, Barres BA. 2008; A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci. 28:264–278. DOI: 10.1523/JNEUROSCI.4178-07.2008. PMID: 18171944. PMCID: PMC6671143.
Article
63. Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O'Keeffe S, Phatnani HP, Guarnieri P, Caneda C, Ruderisch N, Deng S, Liddelow SA, Zhang C, Daneman R, Maniatis T, Barres BA, Wu JQ. 2014; An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci. 34:11929–11947. Erratum in: J Neurosci. 2015;35:846-846. DOI: 10.1523/JNEUROSCI.1860-14.2014. PMID: 25186741. PMCID: PMC4152602.
Article
64. Park JS, Saeed K, Jo MH, Kim MW, Lee HJ, Park CB, Lee G, Kim MO. 2022; LDHB deficiency promotes mitochondrial dysfunction mediated oxidative stress and neurodegeneration in adult mouse brain. Antioxidants (Basel). 11:261. DOI: 10.3390/antiox11020261. PMID: 35204143. PMCID: PMC8868245.
Article
65. Tian C, Kim YJ, Hali S, Choo OS, Lee JS, Jung SK, Choi YU, Park CB, Choung YH. 2020; Suppressed expression of LDHB promotes age-related hearing loss via aerobic glycolysis. Cell Death Dis. 11:375. DOI: 10.1038/s41419-020-2577-y. PMID: 32415082. PMCID: PMC7229204.
Article
66. Lee JS, Yoon BS, Han S, Kim Y, Park CB. 2024; Diminished lactate utilization in LDHB-deficient neurons leads to impaired long-term memory retention. Exp Neurol. 384:115064. DOI: 10.1016/j.expneurol.2024.115064. PMID: 39566837.
Article
67. Jha MK, Morrison BM. 2020; Lactate transporters mediate glia-neuron metabolic crosstalk in homeostasis and disease. Front Cell Neurosci. 14:589582. DOI: 10.3389/fncel.2020.589582. PMID: 33132853. PMCID: PMC7550678.
Article
68. Pellerin L, Bergersen LH, Halestrap AP, Pierre K. 2005; Cellular and subcellular distribution of monocarboxylate transporters in cultured brain cells and in the adult brain. J Neurosci Res. 79:55–64. Erratum in: J Neurosci Res. 2005;80:739. DOI: 10.1002/jnr.20307. PMID: 15573400.
Article
69. Bak LK, Schousboe A, Sonnewald U, Waagepetersen HS. 2006; Glucose is necessary to maintain neurotransmitter homeostasis during synaptic activity in cultured glutamatergic neurons. J Cereb Blood Flow Metab. 26:1285–1297. DOI: 10.1038/sj.jcbfm.9600281. PMID: 16467783.
Article
70. Rangaraju V, Calloway N, Ryan TA. 2014; Activity-driven local ATP synthesis is required for synaptic function. Cell. 156:825–835. DOI: 10.1016/j.cell.2013.12.042. PMID: 24529383. PMCID: PMC3955179.
Article
71. Hollnagel JO, Cesetti T, Schneider J, Vazetdinova A, Valiullina-Rakhmatullina F, Lewen A, Rozov A, Kann O. 2020; Lactate attenuates synaptic transmission and affects brain rhythms featuring high energy expenditure. iScience. 23:101316. DOI: 10.1016/j.isci.2020.101316. PMID: 32653807. PMCID: PMC7350153.
Article
72. Kann O. 2024; Lactate as a supplemental fuel for synaptic transmission and neuronal network oscillations: potentials and limitations. J Neurochem. 168:608–631. DOI: 10.1111/jnc.15867. PMID: 37309602.
Article
73. Rothman DL, Dienel GA, Behar KL, Hyder F, DiNuzzo M, Giove F, Mangia S. 2022; Glucose sparing by glycogenolysis (GSG) determines the relationship between brain metabolism and neurotransmission. J Cereb Blood Flow Metab. 42:844–860. DOI: 10.1177/0271678X211064399. PMID: 34994222. PMCID: PMC9254033.
Article
74. Casson RJ, Wood JP, Han G, Kittipassorn T, Peet DJ, Chidlow G. M-type pyruvate kinase isoforms and lactate dehydrogenase A in the mammalian retina: metabolic implications. Invest Ophthalmol Vis Sci. DOI: 10.1167/iovs.15-17962. PMID: 26780311.
75. Ximerakis M, Lipnick SL, Innes BT, Simmons SK, Adiconis X, Dionne D, Mayweather BA, Nguyen L, Niziolek Z, Ozek C, Butty VL, Isserlin R, Buchanan SM, Levine SS, Regev A, Bader GD, Levin JZ, Rubin LL. 2019; Single-cell transcriptomic profiling of the aging mouse brain. Nat Neurosci. 22:1696–1708. DOI: 10.1038/s41593-019-0491-3. PMID: 31551601.
Article
76. Frame AK, Sinka JL, Courchesne M, Muhammad RA, Grahovac-Nemeth S, Bernards MA, Bartha R, Cumming RC. 2024; Altered neuronal lactate dehydrogenase A expression affects cognition in a sex- and age-dependent manner. iScience. 27:110342. DOI: 10.1016/j.isci.2024.110342. PMID: 39055955. PMCID: PMC11269950.
Article
77. Ždralević M, Brand A, Di Ianni L, Dettmer K, Reinders J, Singer K, Peter K, Schnell A, Bruss C, Decking SM, Koehl G, Felipe-Abrio B, Durivault J, Bayer P, Evangelista M, O'Brien T, Oefner PJ, Renner K, Pouysségur J, Kreutz M. 2018; Double genetic disruption of lactate dehydrogenases A and B is required to ablate the "Warburg effect" restricting tumor growth to oxidative metabolism. J Biol Chem. 293:15947–15961. DOI: 10.1074/jbc.RA118.004180. PMID: 30158244. PMCID: PMC6187639.
Article
78. Suzuki A, Stern SA, Bozdagi O, Huntley GW, Walker RH, Magistretti PJ, Alberini CM. 2011; Astrocyte-neuron lactate transport is required for long-term memory formation. Cell. 144:810–823. DOI: 10.1016/j.cell.2011.02.018. PMID: 21376239. PMCID: PMC3073831.
Article
79. Zuend M, Saab AS, Wyss MT, Ferrari KD, Hösli L, Looser ZJ, Stobart JL, Duran J, Guinovart JJ, Barros LF, Weber B. 2020; Arousal-induced cortical activity triggers lactate release from astrocytes. Nat Metab. 2:179–191. DOI: 10.1038/s42255-020-0170-4. PMID: 32694692.
Article
80. Bergersen LH, Gjedde A. 2012; Is lactate a volume transmitter of metabolic states of the brain? Front Neuroenergetics. 4:5. DOI: 10.3389/fnene.2012.00005. PMID: 22457647. PMCID: PMC3307048.
Article
81. Jourdain P, Rothenfusser K, Ben-Adiba C, Allaman I, Marquet P, Magistretti PJ. 2018; Dual action of L-Lactate on the activity of NR2B-containing NMDA receptors: from potentiation to neuroprotection. Sci Rep. 8:13472. DOI: 10.1038/s41598-018-31534-y. PMID: 30194439. PMCID: PMC6128851.
Article
82. Lam TK, Gutierrez-Juarez R, Pocai A, Rossetti L. 2005; Regulation of blood glucose by hypothalamic pyruvate metabolism. Science. 309:943–947. DOI: 10.1126/science.1112085. PMID: 16081739.
Article
83. Shimizu H, Watanabe E, Hiyama TY, Nagakura A, Fujikawa A, Okado H, Yanagawa Y, Obata K, Noda M. 2007; Glial Nax channels control lactate signaling to neurons for brain [Na+] sensing. Neuron. 54:59–72. DOI: 10.1016/j.neuron.2007.03.014. PMID: 17408578.
Article
84. Gourine AV, Kasymov V, Marina N, Tang F, Figueiredo MF, Lane S, Teschemacher AG, Spyer KM, Deisseroth K, Kasparov S. 2010; Astrocytes control breathing through pH-dependent release of ATP. Science. 329:571–575. DOI: 10.1126/science.1190721. PMID: 20647426. PMCID: PMC3160742.
Article
85. Glenn TC, Martin NA, Horning MA, McArthur DL, Hovda DA, Vespa P, Brooks GA. 2015; Lactate: brain fuel in human traumatic brain injury: a comparison with normal healthy control subjects. J Neurotrauma. 32:820–832. DOI: 10.1089/neu.2014.3483. PMID: 25594628. PMCID: PMC4530406.
Article
86. Maddock RJ, Buonocore MH, Copeland LE, Richards AL. 2009; Elevated brain lactate responses to neural activation in panic disorder: a dynamic 1H-MRS study. Mol Psychiatry. 14:537–545. DOI: 10.1038/sj.mp.4002137. PMID: 18180759.
Article
87. Lee JS, Yoon BS, Kim Y, Park CB. 2024; LDHB-deficient brain exhibits resistance to ischemic neuronal cell death due to increased vasodilation. Biochem Biophys Res Commun. 734:150766. DOI: 10.1016/j.bbrc.2024.150766. PMID: 39368368.
Article
Full Text Links
  • KJPP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2025 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr