J Dent Rehabil Appl Sci.  2024 Aug;40(3):149-158. 10.14368/jdras.2024.40.3.149.

Effect of fabrication method and surface polishing on the surface roughness and microbial adhesion of provisional restoration

Affiliations
  • 1Department of Prosthodontics, College of Dentistry, Wonkwang University, Iksan, Republic of Korea

Abstract

Purpose
This study aims to investigate the effects of provisional restoration fabrication methods and surface polishing on surface roughness and microbial adhesion through in vitro experiments.
Materials and Methods
120 cylindrical provisional restoration resin blocks (10 × 10 × 2.5 mm) were manufactured according to four fabrication methods, and 30 specimens were assigned to each group. Afterwards, they were divided into non-polishing group, #400 grit SiC polishing group, and #800 grit SiC polishing group and polished to a 10 × 10 × 2 mm specimen size (n = 10). The surface roughness Ra and Ry of the specimen was measured using a Surface Roughness Tester. Three specimens were extracted from each group and were coated with artificial saliva, and then Streptococcus mutans were cultured on the specimens at 37°C for 4 hours. The cultured specimens were fixed to fixatives and photographed using a scanning electron microscope. For statistical analysis, the two way of ANOVA was performed for surface roughness Ra and Ry, respectively, and the surface roughness was tested post-mortem with a Scheffe test.
Results
The fabrication method and the degree of surface polishing of the provisional restorations had a significant effect on both surface roughness Ra and Ry, and had an interaction effect. There was no significant difference in Ra and Ry values in all polishing groups in DLP and LCD groups.
Conclusion
The fabrication method and surface polishing of the provisional restoration had a significant effect on surface roughness and showed different adhesion patterns for S. mutans adhesion.

Keyword

temporary dental restoration; CAD-CAM; 3D printing; milling; surface roughness; bacterial adhesions

Figure

  • Fig. 1 Resin block group NP, #400, #800 polished with SiC paper.

  • Fig. 2 Effects of Fabrication method and polishing on average surface roughness (Ra) and maximum peak to valley roughness height (Ry). Different uppercase letters denote statistical differences among materials.

  • Fig. 3 SEM evaluation of bacterial adhesion on NP group resin surface at ×4000 level. (A) Conventional, (B) Milling, (C) DLP, (D) LCD.

  • Fig. 4 SEM evaluation of bacterial adhesion on #400 group resin surface at ×4000 level. (A) Conventional, (B) Milling, (C) DLP, (D) LCD.

  • Fig. 5 SEM evaluation of bacterial adhesion on #800 group resin surface at ×4000 level. (A) Conventional, (B) Milling, (C) DLP, (D) LCD.


Reference

References

1. Lee EJ, Kang JK, Kim KN. 2012; Physical and Mechanical Properties of Light-Cured Resin Temporary Restorative Materials. Korean J Dent Mater. 39:225–332. DOI: 10.14815/kjdm.2012.09.39.3.225.
2. Tjan AH, Castelnuovo J, Shiotsu G. 1997; Marginal fidelity of crowns fabricated from six proprietary provisional materials. J Prosthet Dent. 77:482–5. DOI: 10.1016/S0022-3913(97)70140-9. PMID: 9151267.
3. Burns DR, Beck DA, Nelson SK. Committee on Research in Fixed Prosthodontics of the Academy of Fixed Prosthodontics. 2003; A review of selected dental literature on contemporary provisional fixed prosthodontic treatment: report of the Committee on Research in Fixed Prosthodontics of the Academy of Fixed Prosthodontics. J Prosthet Dent. 90:474–97. DOI: 10.1016/S0022-3913(03)00259-2. PMID: 14586312.
4. Tallarico M. 2020; Computerization and digital workflow in medicine: Focus on digital dentistry. Materials. 13:2172. DOI: 10.3390/ma13092172. PMID: 32397279. PMCID: PMC7254335.
5. Kim KB, Kim JH, Kim WC, Kim JH. 2014; Three-dimensional evaluation of gaps associated with fixed dental prostheses fabricated with new technologies. J Prosthet Dent. 112:1432–6. DOI: 10.1016/j.prosdent.2014.07.002. PMID: 25218032.
6. Rayyan MM, Aboushelib M, Sayed NM, Ibrahim A, Jimbo R. 2015; Comparison of interim restorations fabricated by CAD/CAM with those fabricated manually. J Prosthet Dent. 114:414–9. DOI: 10.1016/j.prosdent.2015.03.007. PMID: 26001490.
7. Shin MS. 2019; Effect of milling tool wear on the internal fit of PMMA implant interim prosthesis. J Tech Dent. 41:63–9. DOI: 10.14347/kadt.2019.41.2.63.
8. Digholkar S, Madhav VNV, Palaskar J. 2016; Evaluation of the flexural strength and microhardness of provisional crown and bridge materials fabricated by different methods. J Indian Prosthodont Soc. 16:328–34. DOI: 10.4103/0972-4052.191288. PMID: 27746595. PMCID: PMC5062140.
9. Stampfl J, Liska R. 2005; New materials for rapid prototyping applications. Macromol Chem Phys. 206:1253–6. DOI: 10.1002/macp.200500199.
10. Park SJ, Lee HA, Lee SH, Seok S, Lim BS, Kwon JS, Kim KM. 2019; Comparison of physical properties of the various 3D printing temporary crown and bridge resin. Korean J Dent Mater. 46:139–52. DOI: 10.14815/kjdm.2019.46.3.139.
11. Tsolakis IA, Papaioannou W, Papadopoulou E, Dalampira M, Tsolakis AI. 2022; Comparison in Terms of Accuracy between DLP and LCD Printing Technology for Dental Model Printing. Dent J (Basel). 10:181. DOI: 10.3390/dj10100181. PMID: 36285991. PMCID: PMC9600557.
12. Buergers R, Rosentritt M, Handel G. 2007; Bacterial adhesion of Streptococcus mutans to provisional fixed prosthodontic material. J Prosthet Dent. 98:461–9. DOI: 10.1016/S0022-3913(07)60146-2. PMID: 18061740.
13. Köroğlu A, Sahin O, Dede DÖ, Yilmaz B. 2016; Effect of different surface treatment methods on the surface roughness and color stability of interim prosthodontic materials. J Prosthet Dent. 115:447–55. DOI: 10.1016/j.prosdent.2015.10.005. PMID: 26723092.
14. Ionescu A, Wutscher E, Brambilla E, Schneider-Feyrer S, Giessibl FJ, Hahnel S. 2012; Influence of surface properties of resin-based composites on in vitro S treptococcus mutans biofilm development. Eur J Oral Sci. 120:458–65. DOI: 10.1111/j.1600-0722.2012.00983.x. PMID: 22985005.
15. Barbosa GK, Zavanelli RA, Guilherme AS. 2009; Efeito de diferentes técnicas de acabamento e polimento sobre a rugosidade de resinas acrílicas utilizadas para restaurações provisórias. Ciênc Odontol Bras. 12:15–22. DOI: 10.14295/bds.2009.v12i1.248.
16. Rutkunas V, Sabaliauskas V. 2009; Effects of different repolishing techniques on colour change of provisional prosthetic materials. Stomatologija. 11:102–12. PMID: 20179397.
17. Scheibe KG, Almeida KG, Medeiros IS, Costa JF, Alves CM. 2009; Effect of different polishing systems on the surface roughness of microhybrid composites. J Appl Oral Sci. 17:21–6. DOI: 10.1590/S1678-77572009000100005. PMID: 19148401. PMCID: PMC4327609.
18. Apolinário TA, Sampaio Filho HR, Gouvêa CV, Vanzillotta PS, Oliveira DP. 2011; Efeito de diferentes bebidas na superfície de resinas acrílicas autopolimerizáveis submetidas a dois tipos de polimento. Rev Bras Odontol. 88:8–11.
19. Guler AU, Kurt S, Kulunk T. 2005; Effects of various finishing procedures on the staining of provisional restorative materials. J Prosthet Dent. 93:453–8. DOI: 10.1016/j.prosdent.2005.02.001. PMID: 15867755.
20. Tupinambá ÍVM, Giampá PCC, Rocha IAR, Lima EMCX. 2018; Effect of different polishing methods on surface roughness of provisional prosthetic materials. J Indian Prosthodont Soc. 18:96–101. DOI: 10.4103/jips.jips_258_17. PMID: 29692561. PMCID: PMC5903186.
21. Ho TK, Satterthwaite JD, Silikas N. 2018; The effect of chewing simulation on surface roughness of resin composite when opposed by zirconia ceramic and lithium disilicate ceramic. Dent Mater. 34:e15–24. DOI: 10.1016/j.dental.2017.11.014. PMID: 29175160.
22. Young HM, Smith CT, Morton D. 2001; Comparative in vitro evaluation of two provisional restorative materials. J Prosthet Dent. 85:129–32. DOI: 10.1067/mpr.2001.112797. PMID: 11208201.
23. Scurria MS, Powers JM. 1994; Surface roughness of two polished ceramic materials. J Prosthet Dent. 71:174–7. DOI: 10.1016/0022-3913(94)90027-2. PMID: 8126673.
24. Ayad MF, Rosenstiel SF, Hassan MM. 1996; Surface roughness of dentine after tooth preparation with different rotary instrumentation. J Prosthet Dent. 75:122–8. DOI: 10.1016/S0022-3913(96)90087-6. PMID: 8667268.
25. Bollen CM, Papaioanno W, Van Eldere J, Schepers E, Quirynen M, Van Steenberghe D. 1996; The influence of abutment surface soughness on plque accumu lation and peri-implant mucositis. Clin Oral Implants Res. 7:201–11. DOI: 10.1034/j.1600-0501.1996.070302.x. PMID: 9151584.
26. Weitman RT, Eames WB. 1975; Plaque accumulation on composite surfaces after various finishing procedures. J Am Dent Assoc. 91:101–6. DOI: 10.14219/jada.archive.1975.0294. PMID: 166101.
27. Şen D, Göller G, İşsever H. 2002; The effect of two polishing pastes on the surface roughness of bis-acryl composite and methacrylate-based resin. J Prosthet Dent. 88:527–32. DOI: 10.1067/mpr.2002.129335. PMID: 12474004.
28. Augusto MG, de Andrade GS, Caneppele TMF, Borges AB, Torres CRG. 2020; Nanofilled bis-acryl composite resin materials: Is it necessary to polish? J Prosthet Dent. 124:494.e1–5. DOI: 10.1016/j.prosdent.2020.03.015. PMID: 32444205.
29. Shim JS, Kim HC, Park SI, Yun HJ, Ryu JJ. 2019; Comparison of Various Implant Provisional Resin Materials for Cytotoxicity and Attachment to Human Gingival Fibroblasts. Int J Oral Maxillofac Implants. 34:390–6. DOI: 10.11607/jomi.6707. PMID: 30883618.
30. Köroğlu A, Sahin O, Dede DÖ, Yilmaz B. 2016; Effect of different surface treatment methods on the surface roughness and color stability of interim prosthodontic materials. J Prosthet Dent. 115:447–55. DOI: 10.1016/j.prosdent.2015.10.005. PMID: 26723092.
31. Nassary Zadeh P, Lümkemann N, Eichberger M, Stawarczyk B, Kollmuss M. 2020; Differences in Radiopacity, Surface Properties, and Plaque Accumulation for CAD/CAM-Fabricated vs Conventionally Processed Polymer-based Temporary Materials. Oper Dent. 45:407–15. DOI: 10.2341/19-057-L. PMID: 31794338.
32. Giti R, Dabiri S, Motamedifar M, Derafshi R. 2021; Surface roughness, plaque accumulation, and cytotoxicity of provisional restorative materials fabricated by different methods. PLoS One. 16:e0249551. DOI: 10.1371/journal.pone.0249551. PMID: 33819292. PMCID: PMC8021148.
33. Simoneti DM, Pereira-Cenci T, Dos Santos MBF. 2022; Comparison of material properties and biofilm formation in interim single crowns obtained by 3D printing and conventional methods. J Prosthet Dent. 127:168–72. DOI: 10.1016/j.prosdent.2020.06.026. PMID: 33168174.
34. Alt V, Hannig M, Wöstmann B, Balkenhol M. 2011; Fracture strength of temporary fixed partial dentures: CAD/CAM versus directly fabricated restorations. Dent Mater. 27:339–47. DOI: 10.1016/j.dental.2010.11.012. PMID: 21176946.
35. Hao Y, Huang X, Zhou X, Li M, Ren B, Peng X, Cheng L. 2018; Influence of Dental Prosthesis and Restorative Materials Interface on Oral Biofilms. Int J Mol Sci. 19:3157. DOI: 10.3390/ijms19103157. PMID: 30322190. PMCID: PMC6213966.
Full Text Links
  • JDRAS
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2025 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr