Blood Res.  2024;59:11. 10.1007/s44313-024-00010-0.

The role of next‑generation sequencing in hematologic malignancies

Affiliations
  • 1Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic‑Ro 43‑Gil, Songpa‑Gu, Seoul 05505, Korea

Abstract

Next-generation sequencing (NGS) allows high-throughput detection of molecular changes in tumors. Over the past 15 years, NGS has rapidly evolved from a promising research tool to a core component of the clinical labo‑ ratory. Sequencing of tumor cells provides an important step in detecting somatic driver mutations that not only characterize the disease but also influence treatment decisions. For patients with hematologic malignancies, NGS has been used for accurate classification and diagnosis based on genetic alterations. The recently revised World Health Organization classification and the European LeukemiaNet recommendations for acute myeloid leukemia con‑ sider genetic abnormalities as a top priority for diagnosis, prognostication, monitoring of measurable residual disease, and treatment choice. This review aims to present the role and utility of various NGS approaches for the diagnosis, treatment, and follow-up of hemato-oncology patients.

Keyword

Next-generation sequencing; Leukemia; Diagnosis; Prognosis; Monitoring

Reference

1. Khoury JD, Solary E, Abla O, et al. 2022; The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia. 36:1703–19. DOI: 10.1038/s41375-022-01613-1. PMID: 35732831. PMCID: PMC9252913.
Article
2. Alaggio R, Amador C, Anagnostopoulos I, et al. 2022; The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Lymphoid Neoplasms. Leukemia. 36:1720–48. DOI: 10.1038/s41375-022-01620-2. PMID: 35732829. PMCID: PMC9214472.
3. Jaiswal S, Fontanillas P, Flannick J, et al. 2014; Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med. 371:2488–98. DOI: 10.1056/NEJMoa1408617. PMID: 25426837. PMCID: PMC4306669.
Article
4. Steensma DP, Bejar R, Jaiswal S, et al. 2015; Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood. 126:9–16. DOI: 10.1182/blood-2015-03-631747. PMID: 25931582. PMCID: PMC4624443.
Article
5. Malcovati L, Stevenson K, Papaemmanuil E, et al. 2020; SF3B1-mutant MDS as a distinct disease subtype: a proposal from the International Working Group for the Prognosis of MDS. Blood. 136:157–70. DOI: 10.1182/blood.2020004850. PMID: 32347921. PMCID: PMC7362582.
6. Bernard E, Nannya Y, Hasserjian RP, et al. 2020; Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes. Nat Med. 26:1549–56. DOI: 10.1038/s41591-020-1008-z. PMID: 32747829. PMCID: PMC8381722.
7. Bernard E, Tuechler H, Greenberg PL, et al. 2022; Molecular international prognostic scoring system for myelodysplastic syndromes. NEJM Evid. 1:2022. DOI: 10.1056/EVIDoa2200008. PMID: 38319256.
8. Wakita S, Sakaguchi M, Oh I, et al. 2022; Prognostic impact of CEBPA bZIP domain mutation in acute myeloid leukemia. Blood Adv. 6:238–47. DOI: 10.1182/bloodadvances.2021004292. PMID: 34448807. PMCID: PMC8753195.
9. Taube F, Georgi JA, Kramer M, et al. 2022; CEBPA mutations in 4708 patients with acute myeloid leukemia: differential impact of bZIP and TAD mutations on outcome. Blood. 139:87–103. DOI: 10.1182/blood.2020009680. PMID: 34320176.
Article
10. Klco JM, Mullighan CG. 2021; Advances in germline predisposition to acute leukaemias and myeloid neoplasms. Nat Rev Cancer. 21:122–37. DOI: 10.1038/s41568-020-00315-z. PMID: 33328584. PMCID: PMC8404376.
Article
11. Bataller A, Loghavi S, Gerstein Y, et al. 2023; Characteristics and clinical outcomes of patients with myeloid malignancies and DDX41 variants. Am J Hematol. 98:1780–90. DOI: 10.1002/ajh.27070. PMID: 37665752.
12. Duployez N, Largeaud L, Duchmann M, et al. 2022; Prognostic impact of DDX41 germline mutations in intensively treated acute myeloid leukemia patients: an ALFA-FILO study. Blood. 140:756–68. DOI: 10.1182/blood.2021015328. PMID: 35443031. PMCID: PMC9389637.
13. Döhner H, Wei AH, Appelbaum FR, et al. 2022; Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood. 140:1345–77. DOI: 10.1182/blood.2022016867. PMID: 35797463.
Article
14. Byun JM, Yoo SJ, Kim HJ, et al. 2022; IDH1/2 mutations in acute myeloid leukemia. Blood Res. 57:13–9. DOI: 10.5045/br.2021.2021152. PMID: 35197370. PMCID: PMC8958365.
15. Ahn JS, Kim HJ. 2022; FLT3 mutations in acute myeloid leukemia: a review focusing on clinically applicable drugs. Blood Res. 57(S1):32–6. DOI: 10.5045/br.2022.2022017. PMID: 35483923. PMCID: PMC9057665.
16. Walker BA, Boyle EM, Wardell CP, et al. 2015; Mutational spectrum, copy number changes, and outcome: results of a sequencing study of patients with newly diagnosed myeloma. J Clin Oncol. 33:3911–20. DOI: 10.1200/JCO.2014.59.1503. PMID: 26282654. PMCID: PMC6485456.
Article
17. Manier S, Salem KZ, Park J, Landau DA, Getz G, Ghobrial IM. 2017; Genomic complexity of multiple myeloma and its clinical implications. Nat Rev Clin Oncol. 14:100–13. DOI: 10.1038/nrclinonc.2016.122. PMID: 27531699.
Article
18. Heuser M, Freeman SD, Ossenkoppele GJ, et al. 2021; 2021 Update on MRD in acute myeloid leukemia: a consensus document from the European LeukemiaNet MRD Working Party. Blood. 138:2753–67. DOI: 10.1182/blood.2021013626. PMID: 34724563. PMCID: PMC8718623.
Article
19. Meyer C, Larghero P, Almeida Lopes B, et al. 2023; The KMT2A recombinome of acute leukemias in 2023. Leukemia. 37:988–1005. DOI: 10.1038/s41375-023-01877-1. PMID: 37019990. PMCID: PMC10169636.
Article
20. Xie W, Raess PW, Dunlap J, et al. 2022; Adult acute myeloid leukemia patients with NUP98 rearrangement have frequent cryptic translocations and unfavorable outcome. Leuk Lymphoma. 63:1907–16. DOI: 10.1080/10428194.2022.2047672. PMID: 35258401.
21. Bertrums EJM, Smith JL, Harmon L, et al. 2023; Comprehensive molecular and clinical characterization of NUP98 fusions in pediatric acute myeloid leukemia. Haematologica. 108:2044–58. DOI: 10.3324/haematol.2022.281653. PMID: 36815378. PMCID: PMC10388277.
22. Davis K, Sheikh T, Aggarwal N. 2023; Emerging molecular subtypes and therapies in acute lymphoblastic leukemia. Semin Diagn Pathol. 40:202–15. DOI: 10.1053/j.semdp.2023.04.003. PMID: 37120350.
Article
23. Tasian SK. 2023; TCF3::HLF acute lymphoblastic leukemia: still challenging to cure thirty years later. Haematologica. 108:1713–4. DOI: 10.3324/haematol.2023.283148. PMID: 37392046. PMCID: PMC10316242.
24. Tasian SK, Loh ML, Hunger SP. 2017; Philadelphia chromosome-like acute lymphoblastic leukemia. Blood. 130:2064–72. DOI: 10.1182/blood-2017-06-743252. PMID: 28972016. PMCID: PMC5680607.
Article
25. Lilljebjörn H, Henningsson R, Hyrenius-Wittsten A, et al. 2016; Identification of ETV6-RUNX1-like and DUX4-rearranged subtypes in paediatric B-cell precursor acute lymphoblastic leukaemia. Nat Commun. 7:11790. DOI: 10.1038/ncomms11790. PMID: 27265895. PMCID: PMC4897744. PMID: 8f786cff4cc2473789fedd4b0c20a6c4.
Article
26. Duncavage EJ, Schroeder MC, O'Laughlin M, et al. 2021; Genome sequencing as an alternative to cytogenetic analysis in myeloid cancers. N Engl J Med. 384:924–35. DOI: 10.1056/NEJMoa2024534. PMID: 33704937. PMCID: PMC8130455.
Article
27. Ryan SL, Peden JF, Kingsbury Z, et al. 2023; Whole genome sequencing provides comprehensive genetic testing in childhood B-cell acute lymphoblastic leukaemia. Leukemia. 37:518–28. DOI: 10.1038/s41375-022-01806-8. PMID: 36658389. PMCID: PMC9991920.
Article
28. Stengel A, Shahswar R, Haferlach T, et al. 2020; Whole transcriptome sequencing detects a large number of novel fusion transcripts in patients with AML and MDS. Blood Adv. 4:5393–401. DOI: 10.1182/bloodadvances.2020003007. PMID: 33147338. PMCID: PMC7656918.
Article
29. Blachly JS, Walter RB, Hourigan CS. 2022; The present and future of measurable residual disease testing in acute myeloid leukemia. Haematologica. 107:2810–22. DOI: 10.3324/haematol.2022.282034. PMID: 36453518. PMCID: PMC9713561.
Article
30. Logan AC. 2022; Measurable residual disease in acute lymphoblastic leukemia: How low is low enough? Best Pract Res Clin Haematol. 35:101407. DOI: 10.1016/j.beha.2022.101407. PMID: 36517126.
Article
31. Ferla V, Antonini E, Perini T, et al. 2022; Minimal residual disease detection by next-generation sequencing in multiple myeloma: Promise and challenges for response-adapted therapy. Front Oncol. 12:932852. DOI: 10.3389/fonc.2022.932852. PMID: 36052251. PMCID: PMC9426755. PMID: 3a4a5cbe7c4e469dae9619fa211f2045.
Article
32. Svaton M, Skotnicova A, Reznickova L, et al. 2023; NGS better discriminates true MRD positivity for the risk stratification of childhood ALL treated on an MRD-based protocol. Blood. 141:529–33. DOI: 10.1182/blood.2022017003. PMID: 36240445. PMCID: PMC10651772.
33. Jongen-Lavrencic M, Grob T, Hanekamp D, et al. 2018; Molecular minimal residual disease in acute myeloid leukemia. N Engl J Med. 378:1189–99. DOI: 10.1056/NEJMoa1716863. PMID: 29601269.
Article
34. Patkar N, Kakirde C, Shaikh AF, et al. 2021; Clinical impact of panel-based errorcorrected next generation sequencing versus flow cytometry to detect measurable residual disease (MRD) in acute myeloid leukemia (AML). Leukemia. 35:1392–404. DOI: 10.1038/s41375-021-01131-6. PMID: 33558666. PMCID: PMC8102181.
Article
35. Li Y, Solis-Ruiz J, Yang F, et al. 2023; NGS-defined measurable residual disease (MRD) after initial chemotherapy as a prognostic biomarker for acute myeloid leukemia. Blood Cancer J. 13:59. DOI: 10.1038/s41408-023-00833-7. PMID: 37088803. PMCID: PMC10123056. PMID: 939cb0f1782d47228774cf7d70a357d2.
Article
36. Kim J, Yun W, Park YJ, et al. 2021; Chimerism assay using single nucleotide polymorphisms adjacent and in linkage-disequilibrium enables sensitive disease relapse monitoring after hematopoietic stem-cell transplantation. Clin Chem. 67:781–7. DOI: 10.1093/clinchem/hvab010. PMID: 33582770.
Article
37. Kakodkar P, Zhao Y, Pan H, et al. 2023; Validation of next-generation sequencing-based chimerism testing for accurate detection and monitoring of engraftment in hematopoietic stem cell transplantation. Front Genet. 14:1282947. DOI: 10.3389/fgene.2023.1282947. PMID: 37937195. PMCID: PMC10626454. PMID: 461c103b8be1497fbe9d16d947eb9809.
Article
Full Text Links
  • BR
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2025 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr