Anat Cell Biol.  2024 Dec;57(4):523-534. 10.5115/acb.24.112.

Anatomical assessment of the Kambin’s triangle for percutaneous posterolateral transforaminal endoscopic surgery of lumbar intervertebral discs: a magnetic resonance imaging based study

Affiliations
  • 1Department of Radiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
  • 2Department of Neurosurgery, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
  • 3Department of Anatomical Science, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran

Abstract

The aim of the present study was to utilize magnetic resonance imaging (MRI) as a noninvasive tool for evaluation of the Kambin’s triangle safe zone. Lumbar MRIs of 67 healthy subjects were analyzed. On the coronal plane, the distance from the superior endplate to the nerve root exiting from the dura (distance a), the distance from the lateral aspect of the dura to the medial aspect of the nerve root (distance b), and the angle between the nerve root and plane of the corresponding disc (angle α) was measured. On the axial plane, the vertical distance from the upper facet surface to the exiting nerve root and rootdisc distance was also measured. On the sagittal plane, foraminal height, diameter, nerve root-disc distance, and nerve rootpedicle distance were measured. On the coronal plane, right and left α angle was 50.78±4.43 (range, 48.52–51.84 degrees) and 51.07±4.08 (range, 49.25–51.91) degrees, respectively. Distance of right ‘a’ was 17.86±3.86 mm (range, 10.56–24.84 mm) and left ‘a’ was 18.03±3.73 mm (range, 10.98–24.82 mm), distance of right ‘b’ was 15.57±2.61 mm (range, 10.54–20.70 mm) and left ‘b’ was 15.46±2.68 mm (range, 10.93–19.23 mm). All these measurements increased as the spine level went down. Foraminal height and diameter decreased caudally. Nerve root-facet distance did not show change as the level went down. The study indicated that radiologic measurement is feasible to evaluate the anatomy of the Kambin’s triangle. At lower lumbar levels, the exiting nerve root is at risk of injury.

Keyword

Kambin’s triangle; Endoscopic discectomy; Magnetic resonance imaging; Lumbosacral regions; Spinal nerve

Figure

  • Fig. 1 Schematic diagram of the Kambin’s triangle (triangular safe zone) on the sagittal plane. The hypotenuse is bordered medially by the associated spinal nerve, posteriorly by the lateral edge of the superior articular process of the subsequent inferior vertebra, and inferiorly by the rim of the vertebral plate. KT, Kambin’s triangle.

  • Fig. 2 The magnetic resonance image shows the measurements related to the left side safety working zone at L4–L5 on the coronal plane. Distance a: the distance from the superior endplate to the nerve root exiting from the dura. Distance b: the distance from the lateral aspect of the dura to the medial aspect of the nerve root along the superior endplate. Angle α: the angle between the exiting nerve root and the plane of the corresponding disc.

  • Fig. 3 Examples of the parameters that are calculated at the middle of the pedicle on the T1-weighted magnetic resonance imaging sagittal section. A, foramina height; B, middle foraminal diameter.

  • Fig. 4 T2-weighted magnetic resonance image showing the parameters measured on the transverse plane at the superior margin of the disc. Gs, foraminal width; Hs, nerve root-disc distance; Ii, nerve root-facet distance.

  • Fig. 5 (A) The severity of the correlation between the factors affecting alpha and (B) the model’s goodness of fit in prediction. GENDER=0, female; BMI, body mass index.

  • Fig. 6 (A) The intensity of the correlation between the factors affecting a and (B) the model’s goodness of fit in prediction. GENDER=0, female; BMI, body mass index.

  • Fig. 7 (A) The intensity of the correlation between the factors affecting b and (B) the model’s goodness of fit in prediction. GENDER=0, female; BMI, body mass index.

  • Fig. 8 (A) The intensity of the correlation between the factors affecting h and (B) the model’s goodness of fit in prediction. GENDER=0, female; BMI, body mass index.

  • Fig. 9 (A) The intensity of the correlation between the factors affecting w and (B) the model’s goodness of fit in prediction. GENDER=0, female; BMI, body mass index.

  • Fig. 10 (A) The intensity of the correlation between the factors affecting Gs and (B) the model’s goodness of fit in prediction. GENDER=0, female; BMI, body mass index. Gs, foraminal width.

  • Fig. 11 (A) The intensity of the correlation between the factors affecting Hs and (B) the model’s goodness of fit in prediction. GENDER=0, female; BMI, body mass index. Hs, nerve root-disc distance.


Reference

References

1. Williams KD, Park AL. Canale ST, Campbell WC, editors. Lower back pain and disorders of intervertebral discs. Campbell's operative orthopaedics. 10th ed. Mosby;2003. p. 1955–2028.
2. Lühmann D, Burkhardt-Hammer T, Borowski C, Raspe H. 2005; Minimally invasive surgical procedures for the treatment of lumbar disc herniation. GMS Health Technol Assess. 1:Doc07.
3. Nellensteijn J, Ostelo R, Bartels R, Peul W, van Royen B, van Tulder M. 2010; Transforaminal endoscopic surgery for symptomatic lumbar disc herniations: a systematic review of the literature. Eur Spine J. 19:181–204. DOI: 10.1007/s00586-009-1155-x. PMID: 19756781. PMCID: PMC2899820.
4. Tzaan WC. 2007; Transforaminal percutaneous endoscopic lumbar discectomy. Chang Gung Med J. 30:226–34.
5. Thongtrangan I, Le H, Park J, Kim DH. 2004; Minimally invasive spinal surgery: a historical perspective. Neurosurg Focus. 16:E13. DOI: 10.3171/foc.2004.16.1.14. PMID: 15264791.
6. Xin G, Shi-Sheng H, Hai-Long Z. 2013; Morphometric analysis of the YESS and TESSYS techniques of percutaneous transforaminal endoscopic lumbar discectomy. Clin Anat. 26:728–34. DOI: 10.1002/ca.22286. PMID: 23824995.
7. Kambin P, Gellman H. 1983; Percutaneous lateral discectomy of the lumbar spine: a preliminary report. Clin Orthop Relat Res. 174:127–32. DOI: 10.1097/00003086-198304000-00017.
8. Ruetten S, Komp M, Merk H, Godolias G. 2008; Full-endoscopic interlaminar and transforaminal lumbar discectomy versus conventional microsurgical technique: a prospective, randomized, controlled study. Spine (Phila Pa 1976). 33:931–9. DOI: 10.1097/BRS.0b013e31816c8af7. PMID: 18427312.
9. Hermantin FU, Peters T, Quartararo L, Kambin P. 1999; A prospective, randomized study comparing the results of open discectomy with those of video-assisted arthroscopic microdiscectomy. J Bone Joint Surg Am. 81:958–65. DOI: 10.2106/00004623-199907000-00008. PMID: 10428127.
10. Ahn Y, Lee SH, Lee JH, Kim JU, Liu WC. 2009; Transforaminal percutaneous endoscopic lumbar discectomy for upper lumbar disc herniation: clinical outcome, prognostic factors, and technical consideration. Acta Neurochir (Wien). 151:199–206. DOI: 10.1007/s00701-009-0204-x. PMID: 19229467.
11. Choi I, Ahn JO, So WS, Lee SJ, Choi IJ, Kim H. 2013; Exiting root injury in transforaminal endoscopic discectomy: preoperative image considerations for safety. Eur Spine J. 22:2481–7. DOI: 10.1007/s00586-013-2849-7. PMID: 23754603. PMCID: PMC3886527.
12. Lee SH, Kang BU, Ahn Y, Choi G, Choi YG, Ahn KU, Shin SW, Kang HY. 2006; Operative failure of percutaneous endoscopic lumbar discectomy: a radiologic analysis of 55 cases. Spine (Phila Pa 1976). 31:E285–90.
13. Yeung AT, Tsou PM. 2002; Posterolateral endoscopic excision for lumbar disc herniation: surgical technique, outcome, and complications in 307 consecutive cases. Spine (Phila Pa 1976). 27:722–31. DOI: 10.1097/00007632-200204010-00009. PMID: 11923665.
14. Ditsworth DA. 1998; Endoscopic transforaminal lumbar discectomy and reconfiguration: a postero-lateral approach into the spinal canal. Surg Neurol. 49:588–97. discussion 597–8. DOI: 10.1016/S0090-3019(98)00004-4. PMID: 9637618.
15. Parke W. 1991; Anatomy of the spinal nerve and its surrounding structures. Semin Orthop. 6:65–71.
16. Hurday Y, Xu B, Guo L, Cao Y, Wan Y, Jiang H, Liu Y, Yang Q, Ma X. 2017; Radiographic measurement for transforaminal percutaneous endoscopic approach (PELD). Eur Spine J. 26:635–45. DOI: 10.1007/s00586-016-4454-z. PMID: 26922736.
17. Mirkovic SR, Schwartz DG, Glazier KD. 1995; Anatomic considerations in lumbar posterolateral percutaneous procedures. Spine (Phila Pa 1976). 20:1965–71. DOI: 10.1097/00007632-199509150-00001. PMID: 8578369.
18. Min JH, Kang SH, Lee JB, Cho TH, Suh JK, Rhyu IJ. 2005; Morphometric analysis of the working zone for endoscopic lumbar discectomy. J Spinal Disord Tech. 18:132–5. DOI: 10.1097/01.bsd.0000159034.97246.4f. PMID: 15800429.
19. Lertudomphonwanit T, Keorochana G, Kraiwattanapong C, Chanplakorn P, Leelapattana P, Wajanavisit W. 2016; Anatomic considerations of intervertebral disc perspective in lumbar posterolateral approach via Kambin's triangle: cadaveric study. Asian Spine J. 10:821–7. DOI: 10.4184/asj.2016.10.5.821. PMID: 27790308. PMCID: PMC5081315.
20. Arslan M, Cömert A, Açar Hİ, Ozdemir M, Elhan A, Tekdemir I, Tubbs RS, Uğur HÇ. 2012; Nerve root to lumbar disc relationships at the intervertebral foramen from a surgical viewpoint: an anatomical study. Clin Anat. 25:218–23. DOI: 10.1002/ca.21213. PMID: 21671286.
21. Kansu L, Aydın E, Akkaya H, Avcı S, Akalın N. 2017; Shrinkage of nasal mucosa and cartilage during formalin fixation. Balkan Med J. 34:458–63. DOI: 10.4274/balkanmedj.2015.1470. PMID: 28552840. PMCID: PMC5635634.
22. Tran H, Jan NJ, Hu D, Voorhees A, Schuman JS, Smith MA, Wollstein G, Sigal IA. 2017; Formalin fixation and cryosectioning cause only minimal changes in shape or size of ocular tissues. Sci Rep. 7:12065. DOI: 10.1038/s41598-017-12006-1. PMID: 28935889. PMCID: PMC5608899.
23. Chhabra A, Zhao L, Carrino JA, Trueblood E, Koceski S, Shteriev F, Lenkinski L, Sinclair CD, Andreisek G. 2013; MR neurography: advances. Radiol Res Pract. 2013:809568. DOI: 10.1155/2013/809568. PMID: 23589774. PMCID: PMC3622412.
24. Guan X, Gu X, Zhang L, Wu X, Zhang H, He S, Gu G, Fan G, Fu Q. 2015; Morphometric analysis of the working zone for posterolateral endoscopic lumbar discectomy based on magnetic resonance neurography. J Spinal Disord Tech. 28:E78–84. DOI: 10.1097/BSD.0000000000000145. PMID: 25093650.
25. Pairaiturkar PP, Sudame OS, Pophale CS. 2019; Evaluation of dimensions of Kambin's triangle to calculate maximum permissible cannula diameter for percutaneous endoscopic lumbar discectomy: a 3-dimensional magnetic resonance imaging based study. J Korean Neurosurg Soc. 62:414–21. DOI: 10.3340/jkns.2018.0091. PMID: 31079448. PMCID: PMC6616981.
26. He L, Feng H, Ma X, Chang Q, Sun L, Chang J, Zhang Y. 2024; Percutaneous endoscopic posterior lumbar interbody fusion for the treatment of degenerative lumbar diseases: a technical note and summary of the initial clinical outcomes. Br J Neurosurg. 38:573–8. DOI: 10.1080/02688697.2021.1929838. PMID: 34027759.
27. Kambin P. 1991; Arthroscopic microdiskectomy. Mt Sinai J Med. 58:159–64.
28. Schaffer JL, Kambin P. 1991; Percutaneous posterolateral lumbar discectomy and decompression with a 6.9-millimeter cannula. Analysis of operative failures and complications. J Bone Joint Surg Am. 73:822–31. DOI: 10.2106/00004623-199173060-00005. PMID: 1830052.
29. Ozer AF, Suzer T, Can H, Falsafi M, Aydin M, Sasani M, Oktenoglu T. 2017; Anatomic assessment of variations in Kambin's triangle: a surgical and cadaver study. World Neurosurg. 100:498–503. DOI: 10.1016/j.wneu.2017.01.057. PMID: 28132923.
30. Hoshide R, Feldman E, Taylor W. 2016; Cadaveric analysis of the Kambin's triangle. Cureus. 8:e475. DOI: 10.7759/cureus.475.
31. Al-Hadidi MT, Abu-Ghaida JH, Badran DH, Al-Hadidi AM, Ramadan HN, Massad DF. 2003; Magnetic resonance imaging of normal lumbar intervertebral foraminal height. Neurosciences (Riyadh). 8:165–70.
32. Civelek E, Solmaz I, Cansever T, Onal B, Kabatas S, Bolukbasi N, Sirin S, Kahraman S. 2012; Radiological analysis of the triangular working zone during transforaminal endoscopic lumbar discectomy. Asian Spine J. 6:98–104. DOI: 10.4184/asj.2012.6.2.98. PMID: 22708013. PMCID: PMC3372555.
33. Hoogland T, van den Brekel-Dijkstra K, Schubert M, Miklitz B. 2008; Endoscopic transforaminal discectomy for recurrent lumbar disc herniation: a prospective, cohort evaluation of 262 consecutive cases. Spine (Phila Pa 1976). 33:973–8. DOI: 10.1097/BRS.0b013e31816c8ade. PMID: 18427318.
34. Rohmani A, Shafie MS, Nor FM. 2021; Sex estimation using the human vertebra: a systematic review. Egypt J Forensic Sci. 11:25. DOI: 10.1186/s41935-021-00238-2.
35. Lewandowski J, Kocur P, Wendt M, Wiernicka M, Ogurkowska M, Straburzyńska-Lupa A, Goliwąs M, Cieślik K, Waszak M. 2021; Sexual dimorphism of lumbar lordosis and lumbar spine mobility during the period of progressive development. Anthropol Anz. 78:331–46. DOI: 10.1127/anthranz/2021/1355. PMID: 34160544.
36. Amores-Ampuero A, Viciano J. 2020; Sexual dimorphism from vertebrae: its potential use for sex estimation in an identified osteological sample. Australian J Forensic Sci. 54:546–58. DOI: 10.1080/00450618.2020.1840629.
37. Smith GA, Aspden RM, Porter RW. 1993; Measurement of vertebral foraminal dimensions using three-dimensional computerized tomography. Spine (Phila Pa 1976). 18:629–36. DOI: 10.1097/00007632-199304000-00016. PMID: 8484155.
38. Vanharanta H, Korpi J, Heliövaara M, Troup JD. 1985; Radiographic measurements of lumbar spinal canal size and their relation to back mobility. Spine (Phila Pa 1976). 10:461–6. DOI: 10.1097/00007632-198506000-00011. PMID: 2931835.
39. Cramer GD, Cantu JA, Dorsett RD, Greenstein JS, McGregor M, Howe JE, Glenn WV. 2003; Dimensions of the lumbar intervertebral foramina as determined from the sagittal plane magnetic resonance imaging scans of 95 normal subjects. J Manipulative Physiol Ther. 26:160–70. DOI: 10.1016/S0161-4754(02)54109-9. PMID: 12704308.
40. Quester R, Schröder R. 1997; The shrinkage of the human brain stem during formalin fixation and embedding in paraffin. J Neurosci Methods. 75:81–9. DOI: 10.1016/S0165-0270(97)00050-2. PMID: 9262148.
41. Can H, Gomleksiz C, Diren F, Civelek E, Kircelli A, Aydoseli AN, Sencer A. 2020; Anatomical features of neural foramen at T12â€"L1 level for endoscopic transforaminal approach of paramedian and foraminal disc herniations: an anatomical study on fresh human cadavers. Turk Neurosurg. 30:78–82. DOI: 10.5137/1019-5149.JTN.26646-19.4. PMID: 31736029.
Full Text Links
  • ACB
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2025 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr