2. Doyle A, McGarry MP, Lee NA, Lee JJ. 2012; The construction of transgenic and gene knockout/knockin mouse models of human disease. Transgenic Res. 21:327–349. DOI:
10.1007/s11248-011-9537-3. PMID:
21800101. PMCID:
PMC3516403.
4. Dabrowska M, Ciolak A, Kozlowska E, Fiszer A, Olejniczak M. 2020; Generation of new isogenic models of huntington's disease using CRISPR-Cas9 technology. Int J Mol Sci. 21:1854. DOI:
10.3390/ijms21051854. PMID:
32182692. PMCID:
PMC7084361.
5. Zhu Z, Xu L, Cao D, et al. 2021; Effect of orexin-A on mitochondrial biogenesis, mitophagy and structure in HEK293-APPSWE cell model of Alzheimer's disease. Clin Exp Pharmacol Physiol. 48:355–360. DOI:
10.1111/1440-1681.13424. PMID:
33080054.
8. Liu C, Oikonomopoulos A, Sayed N, Wu JC. 2018; Modeling human diseases with induced pluripotent stem cells: from 2D to 3D and beyond. Development. 145:dev156166. DOI:
10.1242/dev.156166. PMID:
29519889. PMCID:
PMC5868991.
11. McTague A, Rossignoli G, Ferrini A, Barral S, Kurian MA. 2021; Genome editing in iPSC-based neural systems: from disease models to future therapeutic strategies. Front Genome Ed. 3:630600. DOI:
10.3389/fgeed.2021.630600. PMID:
34713254. PMCID:
PMC8525405.
13. Ferreira da Silva J, Oliveira GP, Arasa-Verge EA, et al. 2022; Prime editing efficiency and fidelity are enhanced in the absence of mismatch repair. Nat Commun. 13:760. DOI:
10.1038/s41467-022-28442-1. PMID:
35140211. PMCID:
PMC8828784.
14. Cox DB, Platt RJ, Zhang F. 2015; Therapeutic genome editing: prospects and challenges. Nat Med. 21:121–131. DOI:
10.1038/nm.3793. PMID:
25654603. PMCID:
PMC4492683.
15. Chapman JR, Taylor MR, Boulton SJ. 2012; Playing the end game: DNA double-strand break repair pathway choice. Mol Cell. 47:497–510. DOI:
10.1016/j.molcel.2012.07.029. PMID:
22920291.
17. Doman JL, Sousa AA, Randolph PB, Chen PJ, Liu DR. 2022; Designing and executing prime editing experiments in mammalian cells. Nat Protoc. 17:2431–2468. DOI:
10.1038/s41596-022-00724-4. PMID:
35941224. PMCID:
PMC9799714.
19. McDonald J, Bayrak-Toydemir P, Pyeritz RE. 2011; Hereditary hemorrhagic telangiectasia: an overview of diagnosis, management, and pathogenesis. Genet Med. 13:607–616. DOI:
10.1097/GIM.0b013e3182136d32. PMID:
21546842.
20. Robert F, Desroches-Castan A, Bailly S, Dupuis-Girod S, Feige JJ. 2020; Future treatments for hereditary hemorrhagic telangiectasia. Orphanet J Rare Dis. 15:4. DOI:
10.1186/s13023-019-1281-4. PMID:
31910860. PMCID:
PMC6945546.
21. Cymerman U, Vera S, Pece-Barbara N, et al. 2000; Identification of hereditary hemorrhagic telangiectasia type 1 in newborns by protein expression and mutation analysis of endo-glin. Pediatr Res. 47:24–35. DOI:
10.1203/00006450-200001000-00008. PMID:
10625079.
22. Tual-Chalot S, Oh SP, Arthur HM. 2015; Mouse models of hereditary hemorrhagic telangiectasia: recent advances and future challenges. Front Genet. 6:25. DOI:
10.3389/fgene.2015.00025. PMID:
25741358. PMCID:
PMC4332371.
23. Kim D, Seo EJ, Song YS, et al. 2019; Current status of clinical diagnosis and genetic analysis of hereditary hemorrhagic telangiectasia in South Korea: multicenter case series and a systematic review. Neurointervention. 14:91–98. DOI:
10.5469/neuroint.2019.00150. PMID:
31455059. PMCID:
PMC6736501.
24. Kim BG, Jung JH, Kim MJ, et al. 2021; Genetic variants and clinical phenotypes in Korean patients with hereditary hemorrhagic telangiectasia. Clin Exp Otorhinolaryngol. 14:399–406. DOI:
10.21053/ceo.2020.02124. PMID:
33677851. PMCID:
PMC8606283.
26. Mishra R, Joshi RK, Zhao K. 2020; Base editing in crops: current advances, limitations and future implications. Plant Bio-technol J. 18:20–31. DOI:
10.1111/pbi.13225. PMID:
31365173. PMCID:
PMC6920333.
27. Anzalone AV, Randolph PB, Davis JR, et al. 2019; Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. 576:149–157. DOI:
10.1038/s41586-019-1711-4. PMID:
31634902. PMCID:
PMC6907074.
29. Kim HK, Yu G, Park J, et al. 2021; Predicting the efficiency of prime editing guide RNAs in human cells. Nat Biotechnol. 39:198–206. DOI:
10.1038/s41587-020-0677-y. PMID:
32958957.
31. Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. 2016; Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. 533:420–424. DOI:
10.1038/nature17946. PMID:
27096365. PMCID:
PMC4873371.
32. Molla KA, Yang Y. 2019; CRISPR/Cas-mediated base editing: technical considerations and practical applications. Trends Biotechnol. 37:1121–1142. DOI:
10.1016/j.tibtech.2019.03.008. PMID:
30995964.
33. Qi T, Wu F, Xie Y, et al. 2020; Base editing mediated generation of point mutations into human pluripotent stem cells for modeling disease. Front Cell Dev Biol. 8:590581. DOI:
10.3389/fcell.2020.590581. PMID:
33102492. PMCID:
PMC7546412.
34. Wang P, Li H, Zhu M, Han RY, Guo S, Han R. 2022; Correction of DMD in human iPSC-derived cardiomyocytes by base-editing-induced exon skipping. Mol Ther Methods Clin Dev. 28:40–50. DOI:
10.1016/j.omtm.2022.11.010. PMID:
36588820. PMCID:
PMC9792405.
35. Anzalone AV, Koblan LW, Liu DR. 2020; Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nat Biotechnol. 38:824–844. DOI:
10.1038/s41587-020-0561-9. PMID:
32572269.
36. Kritharis A, Al-Samkari H, Kuter DJ. 2018; Hereditary hemorrhagic telangiectasia: diagnosis and management from the hematologist's perspective. Haematologica. 103:1433–1443. DOI:
10.3324/haematol.2018.193003. PMID:
29794143. PMCID:
PMC6119150.
37. Gariballa N, Badawi S, Ali BR. 2024; Endoglin mutants retained in the endoplasmic reticulum exacerbate loss of function in hereditary hemorrhagic telangiectasia type 1 (HHT1) by exerting dominant negative effects on the wild type allele. Traffic. 25:e12928. DOI:
10.1111/tra.12928. PMID:
38272447.
38. Ochoa-Sanchez A, Perez-Sanchez G, Torres-Ledesma AM, et al. 2021; Prime editing, a novel genome-editing tool that may surpass conventional CRISPR-Cas9. Re:. GEN Open. 1:75–82. DOI:
10.1089/regen.2021.0016.
39. Modrego A, Amaranto M, Godino A, Mendoza R, Barra JL, Corchero JL. 2021; Human α-galactosidase a mutants: priceless tools to develop novel therapies for fabry disease. Int J Mol Sci. 22:6518. DOI:
10.3390/ijms22126518. PMID:
34204583. PMCID:
PMC8234732.