Ewha Med J.  2024 Oct;47(4):e69. 10.12771/emj.2024.e69.

Clinical outcomes and future directions of enhanced recovery after surgery in colorectal surgery: a narrative review

Affiliations
  • 1Department of Surgery, Inje University Haeundae Paik Hospital, Busan, Korea
  • 2Department of Surgery, Hallym Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea

Abstract

Enhanced recovery after surgery (ERAS) protocols are designed to minimize surgical stress, preserve physiological function, and expedite recovery through standardized perioperative care for primary colorectal surgery patients. This narrative review explores the benefits of current ERAS protocols in improving outcomes for these patients and provides insights into future advancements. Numerous studies have shown that ERAS protocols significantly reduce the length of hospital stays by several days compared to conventional care. Additionally, the implementation of ERAS is linked to a reduction in postoperative complications, including lower incidences of surgical site infections, anastomotic leaks, and postoperative ileus. Patients adhering to ERAS protocols also benefit from quicker gastrointestinal recovery, marked by an earlier return of bowel function. Some research indicates that colorectal cancer patients undergoing surgery with ERAS protocols may experience improved overall survival rates. High compliance with ERAS protocols leads to better outcomes, yet achieving full adherence continues to be a challenge. Despite these advantages, implementation challenges persist, with compliance rates affected by varying clinical practices and resource availability. However, the future of ERAS looks promising with the incorporation of prehabilitation strategies and technologies such as wearable devices and telemedicine. These innovations provide real-time monitoring, enhance patient engagement, and improve postoperative follow-up, potentially transforming perioperative care in colorectal surgery and offering new avenues for enhanced patient outcomes.

Keyword

Colorectal neoplasms; Colorectal surgery; Enhanced recovery after surgery; Postoperative complications; Preoperative care

Reference

References

1. Gustafsson UO, Scott MJ, Hubner M, Nygren J, Demartines N, Francis N, et al. Guidelines for perioperative care in elective colorectal surgery: enhanced recovery after surgery (ERAS®) society recommendations: 2018. World J Surg. 2019; 43(3):659–695. DOI: 10.1007/s00268-018-4844-y. PMID: 30426190.
Article
2. Ljungqvist O, Scott M, Fearon KC. Enhanced recovery after surgery: a review. JAMA Surg. 2017; 152(3):292–298. DOI: 10.1001/jamasurg.2016.4952. PMID: 28097305.
3. Park IJ. Future direction of enhanced recovery after surgery (ERAS) program in colorectal surgery. Ann Coloproctol. 2022; 38(1):1–2. DOI: 10.3393/ac.2022.00094.0013. PMID: 35247946. PMCID: PMC8898624.
Article
4. Smith TW Jr, Wang X, Singer MA, Godellas CV, Vaince FT. Enhanced recovery after surgery: a clinical review of implementation across multiple surgical subspecialties. Am J Surg. 2020; 219(3):530–534. DOI: 10.1016/j.amjsurg.2019.11.009. PMID: 31761300.
Article
5. Turaga AH. Enhanced recovery after surgery (ERAS) protocols for improving outcomes for patients undergoing major colorectal surgery. Cureus. 2023; 15(7):e41755. DOI: 10.7759/cureus.41755.
Article
6. Ljungqvist O, de Boer HD, Balfour A, Fawcett WJ, Lobo DN, Nelson G, et al. Opportunities and challenges for the next phase of enhanced recovery after surgery: a review. JAMA Surg. 2021; 156(8):775–784. DOI: 10.1001/jamasurg.2021.0586. PMID: 33881466.
7. Bardram L, Funch-Jensen P, Jensen P, Crawford ME, Kehlet H. Recovery after laparoscopic colonic surgery with epidural analgesia, and early oral nutrition and mobilisation. Lancet. 1995; 345(8952):763–764. DOI: 10.1016/S0140-6736(95)90643-6. PMID: 7891489.
Article
8. Tampo MMT, Onglao MAS, Lopez MPJ, Sacdalan MDP, Cruz MCL, Apellido RT, et al. Improved outcomes with implementation of an enhanced recovery after surgery pathway for patients undergoing elective colorectal surgery in the Philippines. Ann Coloproctol. 2022; 38(2):109–116. DOI: 10.3393/ac.2020.09.02. PMID: 32972103. PMCID: PMC9021849.
Article
9. Lassen K, Hannemann P, Ljungqvist O, Fearon K, Dejong CHC, von Meyenfeldt MF, et al. Patterns in current perioperative practice: survey of colorectal surgeons in five northern European countries. BMJ. 2005; 330(7505):1420–1421. DOI: 10.1136/bmj.38478.568067.AE. PMID: 15911535. PMCID: PMC558375.
Article
10. Pędziwiatr M, Mavrikis J, Witowski J, Adamos A, Major P, Nowakowski M, et al. Current status of enhanced recovery after surgery (ERAS) protocol in gastrointestinal surgery. Med Oncol. 2018; 35(6):95. DOI: 10.1007/s12032-018-1153-0. PMID: 29744679. PMCID: PMC5943369.
Article
11. Gillissen F, Hoff C, Maessen JMC, Winkens B, Teeuwen JHFA, von Meyenfeldt MF, et al. Structured synchronous implementation of an enhanced recovery program in elective colonic surgery in 33 hospitals in The Netherlands. World J Surg. 2013; 37(5):1082–1093. DOI: 10.1007/s00268-013-1938-4. PMID: 23392451.
Article
12. Gonzalez-Ayora S, Pastor C, Guadalajara H, Ramirez JM, Royo P, Redondo E, et al. Enhanced recovery care after colorectal surgery in elderly patients. Compliance and outcomes of a multicenter study from the Spanish working group on ERAS. Int J Colorectal Dis. 2016; 31(9):1625–1631. DOI: 10.1007/s00384-016-2621-7. PMID: 27378580. PMCID: PMC4988997.
Article
13. Koh W, Lee CS, Bae JH, Al-Sawat A, Lee IK, Jin HY. Clinical validation of implementing enhanced recovery after surgery protocol in elderly colorectal cancer patients. Ann Coloproctol. 2022; 38(1):47–52. DOI: 10.3393/ac.2021.00283.0040. PMID: 34284558. PMCID: PMC8898633.
Article
14. Toh JWT, Cecire J, Hitos K, Shedden K, Gavegan F, Pathmanathan N, et al. The impact of variations in care and complications within a colorectal enhanced recovery after surgery program on length of stay. Ann Coloproctol. 2022; 38(1):36–46. DOI: 10.3393/ac.2020.11.23. PMID: 33957036. PMCID: PMC8898630.
Article
15. Kim JS, Lee CS, Bae JH, Han SR, Lee DS, Lee IK, et al. Clinical impact of a multimodal pain management protocol for loop ileostomy reversal. Ann Coloproctol. 2024; 40(3):210–216. DOI: 10.3393/ac.2022.01137.0162. PMID: 38946091. PMCID: PMC11362762.
Article
16. Ljungqvist O, Jonathan E. Rhoads lecture 2011: insulin resistance and enhanced recovery after surgery. JPEN J Parenter Enteral Nutr. 2012; 36(4):389–398. DOI: 10.1177/0148607112445580. PMID: 22577121.
17. Gianotti L, Biffi R, Sandini M, Marrelli D, Vignali A, Caccialanza R, et al. Preoperative oral carbohydrate load versus placebo in major elective abdominal surgery (PROCY): a randomized, placebo-controlled, multicenter, phase III trial. Ann Surg. 2018; 267(4):623–630. DOI: 10.1097/SLA.0000000000002325. PMID: 28582271.
Article
18. Andersen HK, Lewis SJ, Thomas S. Early enteral nutrition within 24h of colorectal surgery versus later commencement of feeding for postoperative complications. Cochrane Database Syst Rev. 2006; (4):CD004080. DOI: 10.1002/14651858.CD004080.pub2. PMID: 17054196.
Article
19. Lobo DN, Bostock KA, Neal KR, Perkins AC, Rowlands BJ, Allison SP. Effect of salt and water balance on recovery of gastrointestinal function after elective colonic resection: a randomised controlled trial. Lancet. 2002; 359(9320):1812–1818. DOI: 10.1016/S0140-6736(02)08711-1. PMID: 12044376.
Article
20. Rollins KE, Lobo DN. Intraoperative goal-directed fluid therapy in elective major abdominal surgery: a meta-analysis of randomized controlled trials. Ann Surg. 2016; 263(3):465–476. DOI: 10.1097/SLA.0000000000001366. PMID: 26445470. PMCID: PMC4741406.
Article
21. Brandstrup B, Svendsen PE, Rasmussen M, Belhage B, Rodt SÅ, Hansen B, et al. Which goal for fluid therapy during colorectal surgery is followed by the best outcome: near-maximal stroke volume or zero fluid balance? Br J Anaesth. 2012; 109(2):191–199. DOI: 10.1093/bja/aes163. PMID: 22710266.
Article
22. Thiele RH, Raghunathan K, Brudney CS, Lobo DN, Martin D, Senagore A, et al. American Society for Enhanced Recovery (ASER) and Perioperative Quality Initiative (POQI) joint consensus statement on perioperative fluid management within an enhanced recovery pathway for colorectal surgery. Perioper Med. 2016; 5:24. DOI: 10.1186/s13741-016-0049-9. PMID: 27660701. PMCID: PMC5027098.
Article
23. Li N, Liu Y, Chen H, Sun Y. Efficacy and safety of enhanced recovery after surgery pathway in minimally invasive colorectal cancer surgery: a systemic review and meta-analysis. J Laparoendosc Adv Surg Tech A. 2023; 33(2):177–187. DOI: 10.1089/lap.2022.0349. PMID: 36074099.
Article
24. Simpson JC, Moonesinghe SR, Grocott MPW, Kuper M, McMeeking A, Oliver CM, et al. Enhanced recovery from surgery in the UK: an audit of the enhanced recovery partnership programme 2009–2012. Br J Anaesth. 2015; 115(4):560–568. DOI: 10.1093/bja/aev105. PMID: 25926312.
Article
25. Liu VX, Rosas E, Hwang J, Cain E, Foss-Durant A, Clopp M, et al. Enhanced recovery after surgery program implementation in 2 surgical populations in an integrated health care delivery system. JAMA Surg. 2017; 152(7):e171032. DOI: 10.1001/jamasurg.2017.1032. PMID: 28492816. PMCID: PMC5568841.
Article
26. Pędziwiatr M, Kisialeuski M, Wierdak M, Stanek M, Natkaniec M, Matłok M, et al. Early implementation of enhanced recovery after surgery (ERAS®) protocol – compliance improves outcomes: a prospective cohort study. Int J Surg. 2015; 21:75–81. DOI: 10.1016/j.ijsu.2015.06.087. PMID: 26231994.
Article
27. Dag A, Colak T, Turkmenoglu O, Gundogdu R, Aydin S. A randomized controlled trial evaluating early versus traditional oral feeding after colorectal surgery. Clinics. 2011; 66(12):2001–2005. DOI: 10.1590/S1807-59322011001200001. PMID: 22189721. PMCID: PMC3226591.
Article
28. Lau C, Phillips E, Bresee C, Fleshner P. Early use of low residue diet is superior to clear liquid diet after elective colorectal surgery: a randomized controlled trial. Ann Surg. 2014; 260(4):641–647. DOI: 10.1097/SLA.0000000000000929. PMID: 25203881.
29. Meillat H, Brun C, Zemmour C, de Chaisemartin C, Turrini O, Faucher M, et al. Laparoscopy is not enough: full ERAS compliance is the key to improvement of short-term outcomes after colectomy for cancer. Surg Endosc. 2020; 34(5):2067–2075. DOI: 10.1007/s00464-019-06987-5. PMID: 31385073.
Article
30. Wang B, Wu Z, Zhang R, Chen Y, Dong J, Qi X. Retrospective analysis of safety and efficacy of enhanced recovery pathways in stage II–III colorectal cancer patients submitted to surgery and adjuvant therapy. World J Surg Oncol. 2021; 19(1):99. DOI: 10.1186/s12957-021-02203-8. PMID: 33823871. PMCID: PMC8025484.
Article
31. Quiram BJ, Crippa J, Grass F, Lovely JK, Behm KT, Colibaseanu DT, et al. Impact of enhanced recovery on oncological outcomes following minimally invasive surgery for rectal cancer. Br J Surg. 2019; 106(7):922–929. DOI: 10.1002/bjs.11131. PMID: 30861099.
Article
32. Vignali A, Elmore U, Cossu A, Lemma M, Calì B, de Nardi P, et al. Enhanced recovery after surgery (ERAS) pathway vs traditional care in laparoscopic rectal resection: a single-center experience. Tech Coloproctol. 2016; 20(8):559–566. DOI: 10.1007/s10151-016-1497-4. PMID: 27262309.
Article
33. Cristóbal Poch L, Cagigas Fernández C, Gómez-Ruiz M, Ortega Roldán M, Cantero Cid R, Castillo Diego J, et al. Implementation of an enhanced recovery after surgery program with robotic surgery in high-risk patients obtains optimal results after colorectal resections. J Robot Surg. 2022; 16(3):575–586. DOI: 10.1007/s11701-021-01281-w. PMID: 34278544.
Article
34. Garfinkle R, Abou-Khalil J, Morin N, Ghitulescu G, Vasilevsky CA, Gordon P, et al. Is there a role for oral antibiotic preparation alone before colorectal surgery? ACS-NSQIP analysis by coarsened exact matching. Dis Colon Rectum. 2017; 60(7):729–737. DOI: 10.1097/DCR.0000000000000851. PMID: 28594723.
Article
35. Ripollés-Melchor J, Ramírez-Rodríguez JM, Casans-Francés R, Aldecoa C, Abad-Motos A, Logroño-Egea M, et al. Association between use of enhanced recovery after surgery protocol and postoperative complications in colorectal surgery: the postoperative outcomes within enhanced recovery after surgery protocol (POWER) study. JAMA Surg. 2019; 154(8):725–736. DOI: 10.1001/jamasurg.2019.0995. PMID: 31066889. PMCID: PMC6506896.
Article
36. Barberan-Garcia A, Ubré M, Roca J, Lacy AM, Burgos F, Risco R, et al. Personalised prehabilitation in high-risk patients undergoing elective major abdominal surgery: a randomized blinded controlled trial. Ann Surg. 2018; 267(1):50–56. DOI: 10.1097/SLA.0000000000002293. PMID: 28489682.
Article
37. Tidadini F, Bonne A, Trilling B, Quesada JL, Sage PY, Foote A, et al. Effect of implementation of enhanced recovery after surgery (ERAS) protocol and risk factors on 3-year survival after colorectal surgery for cancer–a retrospective cohort of 1001 patients. Int J Colorectal Dis. 2022; 37(5):1151–1159. DOI: 10.1007/s00384-022-04155-1. PMID: 35471611.
Article
38. Tidadini F, Trilling B, Quesada JL, Foote A, Sage PY, Bonne A, et al. Association between enhanced recovery after surgery (ERAS) protocol, risk factors and 3-year survival after colorectal surgery for cancer in the elderly. Aging Clin Exp Res. 2023; 35(1):167–175. DOI: 10.1007/s40520-022-02270-1. PMID: 36306111.
Article
39. West MA, Loughney L, Lythgoe D, Barben CP, Sripadam R, Kemp GJ, et al. Effect of prehabilitation on objectively measured physical fitness after neoadjuvant treatment in preoperative rectal cancer patients: a blinded interventional pilot study. Br J Anaesth. 2015; 114(2):244–251. DOI: 10.1093/bja/aeu318. PMID: 25274049.
Article
40. Kim M, Lee SM, Son IT, Park T, Oh BY. Prognostic value of artificial intelligence-driven, computed tomography-based, volumetric assessment of the volume and density of muscle in patients with colon cancer. Korean J Radiol. 2023; 24(9):849–859. DOI: 10.3348/kjr.2023.0109. PMID: 37634640. PMCID: PMC10462901.
Article
41. Merchea A, Larson DW. Enhanced recovery after surgery and future directions. Surg Clin North Am. 2018; 98(6):1287–1292. DOI: 10.1016/j.suc.2018.07.014. PMID: 30390860.
Article
42. Silver JK, Baima J. Cancer prehabilitation: an opportunity to decrease treatment-related morbidity, increase cancer treatment options, and improve physical and psychological health outcomes. Am J Phys Med Rehab. 2013; 92(8):715–727. DOI: 10.1097/PHM.0b013e31829b4afe. PMID: 23756434.
43. Valkenet K, van de Port IGL, Dronkers JJ, de Vries WR, Lindeman E, Backx FJG. The effects of preoperative exercise therapy on postoperative outcome: a systematic review. Clin Rehabil. 2011; 25(2):99–111. DOI: 10.1177/0269215510380830. PMID: 21059667.
Article
44. Lemanu DP, Singh PP, MacCormick AD, Arroll B, Hill AG. Effect of preoperative exercise on cardiorespiratory function and recovery after surgery: a systematic review. World J Surg. 2013; 37(4):711–720. DOI: 10.1007/s00268-012-1886-4. PMID: 23292047.
Article
45. Abeles A, Kwasnicki RM, Darzi A. Enhanced recovery after surgery: current research insights and future direction. World J Gastrointest Surg. 2017; 9(2):37–45. DOI: 10.4240/wjgs.v9.i2.37. PMID: 28289508. PMCID: PMC5329702.
Article
46. Santa Mina D, Clarke H, Ritvo P, Leung YW, Matthew AG, Katz J, et al. Effect of total-body prehabilitation on postoperative outcomes: a systematic review and meta-analysis. Physiotherapy. 2014; 100(3):196–207. DOI: 10.1016/j.physio.2013.08.008. PMID: 24439570.
Article
47. Gillis C, Li C, Lee L, Awasthi R, Augustin B, Gamsa A, et al. Prehabilitation versus rehabilitation: a randomized control trial in patients undergoing colorectal resection for cancer. Anesthesiology. 2014; 121(5):937–947. DOI: 10.1097/ALN.0000000000000393. PMID: 25076007.
48. Appelboom G, Camacho E, Abraham ME, Bruce SS, Dumont ELP, Zacharia BE, et al. Smart wearable body sensors for patient self-assessment and monitoring. Arch Public Health. 2014; 72(1):28. DOI: 10.1186/2049-3258-72-28. PMID: 25232478. PMCID: PMC4166023.
Article
49. Aziz O, Atallah L, Lo B, Gray E, Athanasiou T, Darzi A, et al. Ear-worn body sensor network device: an objective tool for functional postoperative home recovery monitoring. J Am Med Inform Assoc. 2011; 18(2):156–159. DOI: 10.1136/jamia.2010.005173. PMID: 21252051. PMCID: PMC3116260.
Article
50. Brown CJ, Redden DT, Flood KL, Allman RM. The underrecognized epidemic of low mobility during hospitalization of older adults. J Am Geriatr Soc. 2009; 57(9):1660–1665. DOI: 10.1111/j.1532-5415.2009.02393.x. PMID: 19682121.
Article
51. Takiguchi S, Fujiwara Y, Yamasaki M, Miyata H, Nakajima K, Sekimoto M, et al. Laparoscopy-assisted distal gastrectomy versus open distal gastrectomy. A prospective randomized single-blind study. World J Surg. 2013; 37(10):2379–2386. DOI: 10.1007/s00268-013-2121-7. PMID: 23783252.
Article
52. Cook DJ, Thompson JE, Prinsen SK, Dearani JA, Deschamps C. Functional recovery in the elderly after major surgery: assessment of mobility recovery using wireless technology. Ann Thorac Surg. 2013; 96(3):1057–1061. DOI: 10.1016/j.athoracsur.2013.05.092. PMID: 23992697.
Article
53. Kwasnicki RM, Hettiaratchy S, Jarchi D, Nightingale C, Wordsworth M, Simmons J, et al. Assessing functional mobility after lower limb reconstruction: a psychometric evaluation of a sensor-based mobility score. Ann Surg. 2015; 261(4):800–806. DOI: 10.1097/SLA.0000000000000711. PMID: 25347150.
54. Skender S, Schrotz-King P, Böhm J, Abbenhardt C, Gigic B, Chang-Claude J, et al. Repeat physical activity measurement by accelerometry among colorectal cancer patients: feasibility and minimal number of days of monitoring. BMC Res Notes. 2015; 8:222. DOI: 10.1186/s13104-015-1168-y. PMID: 26048683. PMCID: PMC4456792.
55. Normahani P, Kwasnicki R, Bicknell C, Allen L, Jenkins MP, Gibbs R, et al. Wearable sensor technology efficacy in peripheral vascular disease (wSTEP): a randomized controlled trial. Ann Surg. 2018; 268(6):1113–1118. DOI: 10.1097/SLA.0000000000002300. PMID: 28498233.
Article
56. Jauho AM, Pyky R, Ahola R, Kangas M, Virtanen P, Korpelainen R, et al. Effect of wrist-worn activity monitor feedback on physical activity behavior: a randomized controlled trial in Finnish young men. Prev Med Rep. 2015; 2:628–634. DOI: 10.1016/j.pmedr.2015.07.005. PMID: 26844128. PMCID: PMC4721342.
Article
57. Gunter RL, Chouinard S, Fernandes-Taylor S, Wiseman JT, Clarkson S, Bennett K, et al. Current use of telemedicine for post-discharge surgical care: a systematic review. J Am Coll Surg. 2016; 222(5):915–927. DOI: 10.1016/j.jamcollsurg.2016.01.062. PMID: 27016900. PMCID: PMC5660861.
Article
58. Martínez-Ramos C, Cerdán MT, López RS. Mobile phone–based telemedicine system for the home follow-up of patients undergoing ambulatory surgery. Telemed J E Health. 2009; 15(6):531–537. DOI: 10.1089/tmj.2009.0003. PMID: 19566396.
Article
59. Katz MHG, Slack R, Bruno M, McMillan J, Fleming JB, Lee JE, et al. Outpatient virtual clinical encounters after complex surgery for cancer: a prospective pilot study of "TeleDischarge". J Surg Res. 2016; 202(1):196–203. DOI: 10.1016/j.jss.2015.12.054. PMID: 27083967.
Article
60. Pecorelli N, Fiore JF Jr, Kaneva P, Somasundram A, Charlebois P, Liberman AS, et al. An app for patient education and self-audit within an enhanced recovery program for bowel surgery: a pilot study assessing validity and usability. Surg Endosc. 2018; 32(5):2263–2273. DOI: 10.1007/s00464-017-5920-3. PMID: 29098431.
Article
Full Text Links
  • EMJ
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2025 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr