Ann Liver Transplant.  2022 May;2(1):1-7. 10.52604/alt.22.0003.

Future-directed studies on immunosuppressive treatments and xenografts for organ transplantation

Affiliations
  • 1Department of Surgery, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
  • 2Department of Surgery, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea

Abstract

Marked development has led to significant improvements in the outcomes of organ transplantation. With the development of surgical techniques and immunosuppression, organ transplantation has become the ultimate treatment for patients with end-stage organ failure. Although the short-term transplant results have been improved, long-term outcomes of organ transplantation seem to have reached its limit. Posttransplant immunosuppression is directed toward optimization of the immunosuppressive regimens with conventional immunosuppressive agents for better control of antibodies while avoiding calcineurin inhibitor toxicity and by biological therapeutics including co-stimulation blockade agents that provide effective control of antibodies along with a reduction in the use or avoidance of available immunosuppressive agents. Tolerance induction through transplantation of donor hematopoietic stem cells or infusion of regulatory cells using various sources of immune cells is also a promising strategy because it can lead to avoidance of immunosuppressant-associated complications. Recent results of new immunosuppressants obtained from non-human study models provide valuable information on the optimization of immunosuppressive regimens. The recent initial success of human xenotransplantation using pig kidneys and hearts will give a new insight toward xenotransplantation. All new immunosuppressants and regimens should be validated under the considerations for risk-benefit balance in various clinical conditions. Future immunosuppressive therapy strategies are needed to effectively control antibodies and antibody-mediated rejection while avoiding calcineurin inhibitor-associated complications.

Keyword

Organ transplantation; Immunosuppressive agents; Co-stimulatory pathway; Immune checkpoint; Xenotransplantation

Reference

1. Lodhi SA, Lamb KE, Meier-Kriesche HU. 2011; Solid organ allograft survival improvement in the United States: the long-term does not mirror the dramatic short-term success. Am J Transplant. 11:1226–1235. DOI: 10.1111/j.1600-6143.2011.03539.x. PMID: 21564524.
2. Ojo AO, Held PJ, Port FK, Wolfe RA, Leichtman AB, Young EW, et al. 2003; Chronic renal failure after transplantation of a nonrenal organ. N Engl J Med. 349:931–940. DOI: 10.1056/NEJMoa021744. PMID: 12954741.
3. Nankivell BJ, Borrows RJ, Fung CL, O'Connell PJ, Allen RD, Chapman JR. 2003; The natural history of chronic allograft nephropathy. N Engl J Med. 349:2326–2333. DOI: 10.1056/NEJMoa020009. PMID: 14668458.
4. Pascual M, Theruvath T, Kawai T, Tolkoff-Rubin N, Cosimi AB. 2002; Strategies to improve long-term outcomes after renal transplantation. N Engl J Med. 346:580–590. DOI: 10.1056/NEJMra011295. PMID: 11856798.
5. van Leeuwen MT, Webster AC, McCredie MR, Stewart JH, McDonald SP, Amin J, et al. 2010; Effect of reduced immunosuppression after kidney transplant failure on risk of cancer: population based retrospective cohort study. BMJ. 340:c570. DOI: 10.1136/bmj.c570. PMID: 20150194. PMCID: PMC2820609.
6. Sellarés J, de Freitas DG, Mengel M, Reeve J, Einecke G, Sis B, et al. 2012; Understanding the causes of kidney transplant failure: the dominant role of antibody-mediated rejection and nonadherence. Am J Transplant. 12:388–399. DOI: 10.1111/j.1600-6143.2011.03840.x. PMID: 22081892.
7. Colvin RB, Smith RN. 2005; Antibody-mediated organ-allograft rejection. Nat Rev Immunol. 5:807–817. DOI: 10.1038/nri1702. PMID: 16175181.
8. Park JB. 2020; Future direction of immunosuppressive treatment in organ transplantation. J Korean Med Assoc. 63:259–266. DOI: 10.5124/jkma.2020.63.5.259.
9. Ekberg H, Tedesco-Silva H, Demirbas A, Vítko S, Nashan B, Gürkan A, et al. ELITE-Symphony Study. DOI: 10.1056/NEJMoa067411. PMID: 18094377.
10. Kreis H, Oberbauer R, Campistol JM, Mathew T, Daloze P, Schena FP, et al. Rapamune Maintenance Regimen Trial. DOI: 10.1097/01.ASN.0000113248.59077.76. PMID: 14978184.
11. Senev A, Lerut E, Van Sandt V, Coemans M, Callemeyn J, Sprangers B, et al. 2019; Specificity, strength, and evolution of pretransplant donor-specific HLA antibodies determine outcome after kidney transplantation. Am J Transplant. 19:3100–3113. DOI: 10.1111/ajt.15414. PMID: 31062492.
12. Brokhof MM, Sollinger HW, Hager DR, Muth BL, Pirsch JD, Fernandez LA, et al. 2014; Antithymocyte globulin is associated with a lower incidence of de novo donor-specific antibodies in moderately sensitized renal transplant recipients. Transplantation. 97:612–617. DOI: 10.1097/TP.0000000000000031. PMID: 24531846. PMCID: PMC4106033.
13. Shuker N, Shuker L, van Rosmalen J, Roodnat JI, Borra LC, Weimar W, et al. 2016; A high intrapatient variability in tacrolimus exposure is associated with poor long-term outcome of kidney transplantation. Transpl Int. 29:1158–1167. DOI: 10.1111/tri.12798. PMID: 27188932.
14. Sablik KA, Clahsen-van Groningen MC, Hesselink DA, van Gelder T, Betjes MGH. 2018; Tacrolimus intra-patient variability is not associated with chronic active antibody mediated rejection. PLoS One. 13:e0196552. DOI: 10.1371/journal.pone.0196552. PMID: 29746495. PMCID: PMC5944964.
15. Jenkins MK, Schwartz RH. 1987; Antigen presentation by chemically modified splenocytes induces antigen-specific T cell unresponsiveness in vitro and in vivo. J Exp Med. 165:302–319. DOI: 10.1084/jem.165.2.302. PMID: 3029267. PMCID: PMC2188516.
16. Halloran PF. 2004; Immunosuppressive drugs for kidney transplantation. N Engl J Med. 351:2715–2729. DOI: 10.1056/NEJMra033540. PMID: 15616206.
17. Kawai T, Andrews D, Colvin RB, Sachs DH, Cosimi AB. 2000; Thromboembolic complications after treatment with monoclonal antibody against CD40 ligand. Nat Med. 6:114. DOI: 10.1038/72162.
18. Karnell JL, Rieder SA, Ettinger R, Kolbeck R. 2019; Targeting the CD40-CD40L pathway in autoimmune diseases: humoral immunity and beyond. Adv Drug Deliv Rev. 141:92–103. DOI: 10.1016/j.addr.2018.12.005. PMID: 30552917.
19. Shock A, Burkly L, Wakefield I, Peters C, Garber E, Ferrant J, et al. 2015; CDP7657, an anti-CD40L antibody lacking an Fc domain, inhibits CD40L-dependent immune responses without thrombotic complications: an in vivo study. Arthritis Res Ther. 17:234. DOI: 10.1186/s13075-015-0757-4. PMID: 26335795. PMCID: PMC4558773.
20. Vincenti F, Klintmalm G, Yang H, Ram Peddi V, Blahunka P, Conkle A, et al. 2020; A randomized, phase 1b study of the pharmacokinetics, pharmacodynamics, safety, and tolerability of bleselumab, a fully human, anti-CD40 monoclonal antibody, in kidney transplantation. Am J Transplant. 20:172–180. DOI: 10.1111/ajt.15560. PMID: 31397943. PMCID: PMC6972670.
21. Harland RC, Klintmalm G, Jensik S, Yang H, Bromberg J, Holman J, et al. 2020; Efficacy and safety of bleselumab in kidney transplant recipients: a phase 2, randomized, open-label, noninferiority study. Am J Transplant. 20:159–171. DOI: 10.1111/ajt.15591. PMID: 31509331.
22. Leibler C, Thiolat A, Elsner RA, El Karoui K, Samson C, Grimbert P. 2019; Costimulatory blockade molecules and B-cell-mediated immune response: current knowledge and perspectives. Kidney Int. 95:774–786. DOI: 10.1016/j.kint.2018.10.028. PMID: 30711200.
23. Rostaing L, Vincenti F, Grinyó J, Rice KM, Bresnahan B, Steinberg S, et al. 2013; Long-term belatacept exposure maintains efficacy and safety at 5 years: results from the long-term extension of the BENEFIT study. Am J Transplant. 13:2875–2883. DOI: 10.1111/ajt.12460. PMID: 24047110.
24. Lowe MC, Badell IR, Turner AP, Thompson PW, Leopardi FV, Strobert EA, et al. 2013; Belatacept and sirolimus prolong nonhuman primate islet allograft survival: adverse consequences of concomitant alefacept therapy. Am J Transplant. 13:312–319. DOI: 10.1111/j.1600-6143.2012.04341.x. PMID: 23279640. PMCID: PMC3558637.
25. Kirk AD, Guasch A, Xu H, Cheeseman J, Mead SI, Ghali A, et al. 2014; Renal transplantation using belatacept without maintenance steroids or calcineurin inhibitors. Am J Transplant. 14:1142–1151. DOI: 10.1111/ajt.12712. PMID: 24684552. PMCID: PMC4642731.
26. Kim EJ, Kwun J, Gibby AC, Hong JJ, Farris AB 3rd, Iwakoshi NN, et al. 2014; Costimulation blockade alters germinal center responses and prevents antibody-mediated rejection. Am J Transplant. 14:59–69. DOI: 10.1111/ajt.12526. PMID: 24354871. PMCID: PMC3985346.
27. Bray RA, Gebel HM, Townsend R, Roberts ME, Polinsky M, Yang L, et al. 2018; De novo donor-specific antibodies in belatacept-treated vs cyclosporine-treated kidney-transplant recipients: post hoc analyses of the randomized phase III BENEFIT and BENEFIT-EXT studies. Am J Transplant. 18:1783–1789. DOI: 10.1111/ajt.14721. PMID: 29509295. PMCID: PMC6055714.
28. Song GW, Lee SG, Hwang S, Kim KH, Ahn CS, Moon DB, et al. 2016; ABO-incompatible adult living donor liver transplantation under the desensitization protocol with rituximab. Am J Transplant. 16:157–170. DOI: 10.1111/ajt.13444. PMID: 26372830.
29. Kim H, Choe W, Shin S, Kim YH, Han DJ, Park SK, et al. 2020; ABO-incompatible kidney transplantation can be successfully conducted by monitoring IgM isoagglutinin titers during desensitization. Transfusion. 60:598–606. DOI: 10.1111/trf.15672. PMID: 31957888.
30. NasrAllah MM, Elalfy M, El Ansary M, Elmeseery Y, Amer I, Malvezzi P, et al. 2022; Obinutuzumab in kidney transplantation: effect on B-cell counts and crossmatch tests. Transplantation. 106:369–372. DOI: 10.1097/TP.0000000000003686. PMID: 33577249.
31. Tremblay S, Driscoll JJ, Rike-Shields A, Hildeman DA, Alloway RR, Girnita AL, et al. 2020; A prospective, iterative, adaptive trial of carfilzomib-based desensitization. Am J Transplant. 20:411–421. DOI: 10.1111/ajt.15613. PMID: 31550069. PMCID: PMC7872208.
32. Oni L, Wright RD, Marks S, Beresford MW, Tullus K. 2021; Kidney outcomes for children with lupus nephritis. Pediatr Nephrol. 36:1377–1385. DOI: 10.1007/s00467-020-04686-1. PMID: 32725543. PMCID: PMC8084759.
33. Kawai T, Cosimi AB, Spitzer TR, Tolkoff-Rubin N, Suthanthiran M, Saidman SL, et al. 2008; HLA-mismatched renal transplantation without maintenance immunosuppression. N Engl J Med. 358:353–361. DOI: 10.1056/NEJMoa071074. PMID: 18216355. PMCID: PMC2819046.
34. Lee KW, Park JB, Park H, Kwon Y, Lee JS, Kim KS, et al. 2020; Inducing transient mixed chimerism for allograft survival without maintenance immunosuppression with combined kidney and bone marrow transplantation: protocol optimization. Transplantation. 104:1472–1482. DOI: 10.1097/TP.0000000000003006. PMID: 31634324.
35. Leventhal J, Abecassis M, Miller J, Gallon L, Ravindra K, Tollerud DJ, et al. 2012; Chimerism and tolerance without GVHD or engraftment syndrome in HLA-mismatched combined kidney and hematopoietic stem cell transplantation. Sci Transl Med. 4:124ra28. DOI: 10.1126/scitranslmed.3003509. PMID: 22399264. PMCID: PMC3610325.
36. Tanimine N, Ohira M, Tahara H, Ide K, Tanaka Y, Onoe T, et al. 2020; Strategies for deliberate induction of immune tolerance in liver transplantation: from preclinical models to clinical application. Front Immunol. 11:1615. DOI: 10.3389/fimmu.2020.01615. PMID: 32849546. PMCID: PMC7412931.
37. Giganti G, Atif M, Mohseni Y, Mastronicola D, Grageda N, Povoleri GA, et al. 2021; Treg cell therapy: how cell heterogeneity can make the difference. Eur J Immunol. 51:39–55. DOI: 10.1002/eji.201948131. PMID: 33275279.
38. Todo S, Yamashita K, Goto R, Zaitsu M, Nagatsu A, Oura T, et al. 2016; A pilot study of operational tolerance with a regulatory T-cell-based cell therapy in living donor liver transplantation. Hepatology. 64:632–643. DOI: 10.1002/hep.28459. PMID: 26773713.
39. Kawai T, Leventhal J, Wood K, Strober S. 2019; Summary of the Third International Workshop on Clinical Tolerance. Am J Transplant. 19:324–330. DOI: 10.1111/ajt.15086. PMID: 30133954. PMCID: PMC6349553.
40. Tan J, Wu W, Xu X, Liao L, Zheng F, Messinger S, et al. 2012; Induction therapy with autologous mesenchymal stem cells in living-related kidney transplants: a randomized controlled trial. JAMA. 307:1169–1177. DOI: 10.1001/jama.2012.316. PMID: 22436957.
41. Park CG, Kim JS, Kim YH. 2008; Current status and future perspectives of xenotransplantation and stem cell research in transplantation field. J Korean Med Assoc. 51:732–744. DOI: 10.5124/jkma.2008.51.8.732.
42. Kim SC, Mathews DV, Breeden CP, Higginbotham LB, Ladowski J, Martens G, et al. 2019; Long-term survival of pig-to-rhesus macaque renal xenografts is dependent on CD4 T cell depletion. Am J Transplant. 19:2174–2185. DOI: 10.1111/ajt.15329. PMID: 30821922. PMCID: PMC6658347.
43. Längin M, Mayr T, Reichart B, Michel S, Buchholz S, Guethoff S, et al. 2018; Consistent success in life-supporting porcine cardiac xenotransplantation. Nature. 564:430–433. DOI: 10.1038/s41586-018-0765-z. PMID: 30518863.
44. Rabin RC.
45. Lambert J.
46. Galchen R.
47. Reardon S. 2022; First pig-to-human heart transplant: what can scientists learn? Nature. 601:305–306. DOI: 10.1038/d41586-022-00111-9. PMID: 35031782.
48. Rabin RC.
Full Text Links
  • ALT
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2025 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr