1. Hripcsak G, Duke JD, Shah NH, Reich CG, Huser V, Schuemie MJ, et al. Observational Health Data Sciences and Informatics (OHDSI): opportunities for observational researchers. Stud Health Technol Inform. 2015; 216:574–8.
3. Reich C, Ostropolets A, Ryan P, Rijnbeek P, Schuemie M, Davydov A, et al. OHDSI standardized vocabularies-a large-scale centralized reference ontology for international data harmonization. J Am Med Inform Assoc. 2024; 31(3):583–90.
https://doi.org/10.1093/jamia/ocad247.
Article
4. Wang L, Zhang Y, Jiang M, Wang J, Dong J, Liu Y, et al. Toward a normalized clinical drug knowledge base in China-applying the RxNorm model to Chinese clinical drugs. J Am Med Inform Assoc. 2018; 25(7):809–18.
https://doi.org/10.1093/jamia/ocy020.
Article
5. Henke E, Zoch M, Kallfelz M, Ruhnke T, Leutner LA, Spoden M, et al. Assessing the use of German claims data vocabularies for research in the observational medical outcomes partnership common data model: development and evaluation study. JMIR Med Inform. 2023; 11:e47959.
https://doi.org/10.2196/47959.
Article
6. Maier C, Lang L, Storf H, Vormstein P, Bieber R, Bernarding J, et al. Towards implementation of OMOP in a German University Hospital Consortium. Appl Clin Inform. 2018; 9(1):54–61.
https://doi.org/10.1055/s-0037-1617452.
Article
8. de Groot R, Puttmann DP, Fleuren LM, Thoral PJ, Elbers PW, de Keizer NF, et al. Determining and assessing characteristics of data element names impacting the performance of annotation using Usagi. Int J Med Inform. 2023. Oct. 178:105200.
https://doi.org/10.1016/j.ijmedinf.2023.105200.
Article
11. Zhang Y, Guo L, Du C, Wang Y, Huang D. Extraction of English drug names based on Bert-CNN mode. J Inf Hiding Multimed Signal Process. 2020; 11(2):70–8.
13. Gao Y, Xiong Y, Gao X, Jia K, Pan J, Bi Y, et al. Retrieval-augmented generation for large language models: a survey [Internet]. Ithaca (NY): arXiv.org;2023. [cited at 2024 Jun 6]. Available from:
https://arxiv.org/abs/2005.14165.
14. Izacard G, Lewis P, Lomeli M, Hosseini L, Petroni F, Schick T, et al. Few-shot learning with retrieval augmented language models [Internet]. Ithaca (NY): arXiv.org;2022. [cited at 2024 Jun 6]. Available from:
https://arxiv.org/abs/2208.03299.
16. National Institute of Health Sciences. Japanese accepted names for pharmaceuticals [Internet]. Tokyo, Japan: National Institute of Health Sciences;c2024. [cited at 2024 Jun 6]. Available from:
https://jpdb.nihs.go.jp/jan.
17. Odysseus Data Services. ATHENA: OHDSI Vocabularies Repository [Internet]. [place unknown]: OHDSI;c2024. [cited at 2024 Jun 6]. Available from:
https://athena.ohdsi.org/.
19. Wu Y. Google’s neural machine translation system: bridging the gap between human and machine translation [Internet]. Ithaca (NY): arXiv.org;2016. [cited at 2024 Jun 6]. Available from:
https://arxiv.org/abs/1609.08144.
20. Douze M, Guzhva A, Deng C, Johnson J, Szilvasy G, Mazare PE, et al. The Faiss library [Internet]. Ithaca (NY): arXiv.org;2024. [cited at 2024 Jun 6]. Available from:
https://arxiv.org/abs/2401.08281.
22. Jiang AQ, Sablayrolles A, Mensch A, Bamford C, Chaplot DS, de las Casas D, et al. Mistral 7B [Internet]. Ithaca (NY): arXiv.org;2023. [cited at 2024 Jun 6]. Available from:
https://arxiv.org/abs/2310.06825.
23. Tunstall L, Schmid P, Sanseviero O, Cuenca P, Dehaene O, von Werra L, et al. Welcome Mixtral: a SOTA mixture of experts on Hugging Face [Internet]. Brooklyn (NY): Hugging Face;2023. [cited at 2024 Jun 6]. Available from:
https://huggingface.co/blog/mixtral.
24. Ji Z, Wei Q, Xu H. BERT-based ranking for biomedical entity normalization. AMIA Jt Summits Transl Sci Proc. 2020; 2020:269–77.
25. Shazeer N, Mirhoseini A, Maziarz K, Davis A, Le Q, Hinton G, et al. Outrageously large neural networks: the sparsely-gated mixture-of-experts layer [Internet]. Ithaca (NY): arXiv.org;2017. [cited at 2024 Jun 6]. Available from:
https://arxiv.org/abs/1701.06538.
26. Achiam J, Adler S, Agarwal S, Ahmad L, Akkaya I, Aleman FL, et al. GPT-4 technical report [Internet]. Ithaca (NY): arXiv.org;2023. [cited at 2024 Jun 6]. Available from:
https://arxiv.org/abs/2303.08774v1.
27. Wu T, He S, Liu J, Sun S, Liu K, Han QL, et al. A brief overview of ChatGPT: the history, status quo and potential future development. IEEE/CAA J Automatica Sinica. 2023; 10(5):1122–36.
https://doi.org/10.1109/JAS.2023.123618.
Article