Korean J Gastroenterol.  2024 Aug;84(2):65-81. 10.4166/kjg.2024.076.

Old and New Biologics and Small Molecules in Inflammatory Bowel Disease: Anti-interleukins

Affiliations
  • 1Department of Internal Medicine, Pusan National University School of Medicine, Busan, Korea
  • 2Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
  • 3Department of Internal Medicine, Kosin University College of Medicine, Busan, Korea

Abstract

Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, is a chronic inflammatory disease of the gastrointestinal tract. The introduction of biologics, particularly anti-interleukin (IL) agents, has revolutionized IBD treatment. This review summarizes the role of ILs in IBD pathophysiology and describes the efficacy and positioning of anti-IL therapies. We discuss the functions of key ILs in IBD and their potential as therapeutic targets. The review then discusses anti-IL therapies, focusing primarily on ustekinumab (anti-IL-12/23), risankizumab (anti-IL-23), and mirikizumab (anti-IL-23). Clinical trial data demonstrate their efficacy in inducing and maintaining remission in Crohn's disease and ulcerative colitis. The safety profiles of these agents are generally favorable. However, long-term safety data for newer agents are still limited. The review also briefly discusses emerging therapies such as guselkumab and brazikumab. Network meta-analyses suggest that anti-IL therapies perform well compared to other biological agents. These agents may be considered first- or second-line therapies for many patients, especially those with comorbidities or safety concerns. Anti-IL therapies represent a significant advancement in IBD treatment, offering effective and relatively safe options for patients with moderate to severe disease.

Keyword

Inflammatory bowel disease; Interleukins; Review

Reference

1. Korean Association for the Study of Intestinal Diseases. 2020 Inflammatory bowel disease fact sheet in Korea [Internet]. Seoul: Korean Association for the Study of Intestinal Diseases;cited 2024 Jun 11. Available from: https://www.kasid.org/file/IBM/IBD%20fact%20sheet_1217.pdf.
2. Wang R, Li Z, Liu S, Zhang D. Global, regional and national burden of inflammatory bowel disease in 204 countries and territories from 1990 to 2019: a systematic analysis based on the Global Burden of Disease Study 2019. BMJ Open. 2023; 13:e065186. DOI: 10.1136/bmjopen-2022-065186. PMID: 36977543. PMCID: PMC10069527.
3. Perler BK, Ungaro R, Baird G, et al. 2019; Presenting symptoms in inflammatory bowel disease: descriptive analysis of a community-based inception cohort. BMC Gastroenterol. 19:47. DOI: 10.1186/s12876-019-0963-7. PMID: 30940072. PMCID: PMC6446285.
4. Seyedian SS, Nokhostin F, Malamir MD. 2019; A review of the diagnosis, prevention, and treatment methods of inflammatory bowel disease. J Med Life. 12:113–122. DOI: 10.25122/jml-2018-0075. PMID: 31406511. PMCID: PMC6685307.
5. Muzammil MA, Fariha F, Patel T, et al. 2023; Advancements in inflammatory bowel disease: a narrative review of diagnostics, management, epidemiology, prevalence, patient outcomes, quality of life, and clinical presentation. Cureus. 15:e41120. DOI: 10.7759/cureus.41120.
6. Hanauer SB, Feagan BG, Lichtenstein GR, et al. 2002; Maintenance infliximab for Crohn's disease: the ACCENT I randomised trial. Lancet. 359:1541–1549. DOI: 10.1016/S0140-6736(02)08512-4. PMID: 12047962.
7. Ben-Horin S, Chowers Y. 2011; Review article: loss of response to anti-TNF treatments in Crohn's disease. Aliment Pharmacol Ther. 33:987–995. DOI: 10.1111/j.1365-2036.2011.04612.x. PMID: 21366636.
8. Neurath MF. 2017; Current and emerging therapeutic targets for IBD. Nat Rev Gastroenterol Hepatol. 14:269–278. DOI: 10.1038/nrgastro.2016.208. PMID: 28144028.
9. Sands BE, Sandborn WJ, Panaccione R, et al. 2019; Ustekinumab as induction and maintenance therapy for ulcerative colitis. N Engl J Med. 381:1201–1214. DOI: 10.1056/NEJMoa1900750. PMID: 31553833.
10. Feagan BG, Sandborn WJ, Gasink C, et al. 2016; Ustekinumab as induction and maintenance therapy for Crohn's disease. N Engl J Med. 375:1946–1960. DOI: 10.1056/NEJMoa1602773. PMID: 27959607.
11. Deepak P, Sandborn WJ. 2017; Ustekinumab and anti-interleukin-23 agents in Crohn's disease. Gastroenterol Clin North Am. 46:603–626. DOI: 10.1016/j.gtc.2017.05.013. PMID: 28838418.
12. Levin AA, Gottlieb AB. 2014; Specific targeting of interleukin-23p19 as effective treatment for psoriasis. J Am Acad Dermatol. 70:555–561. DOI: 10.1016/j.jaad.2013.10.043. PMID: 24373779.
13. McLean MH, Neurath MF, Durum SK. 2014; Targeting interleukins for the treatment of inflammatory bowel disease-what lies beyond anti-TNF therapy? Inflamm Bowel Dis. 20:389–397. DOI: 10.1097/01.MIB.0000437616.37000.41. PMID: 24356385. PMCID: PMC7667487.
14. Muro M, Mrowiec A. 2015; Interleukin (IL)-1 gene cluster in inflammatory bowel disease: is IL-1RA implicated in the disease onset and outcome? Dig Dis Sci. 60:1126–1128. DOI: 10.1007/s10620-015-3571-6. PMID: 25875754.
15. Andus T, Daig R, Vogl D, et al. 1997; Imbalance of the interleukin 1 system in colonic mucosa--association with intestinal inflammation and interleukin 1 receptor antagonist [corrected] genotype 2. Gut. 41:651–657. DOI: 10.1136/gut.41.5.651. PMID: 9414973. PMCID: PMC1891562.
16. Ranson N, Veldhuis M, Mitchell B, et al. 2019; NLRP3-dependent and-independent processing of interleukin (IL)-1β in active ulcerative colitis. Int J Mol Sci. 20:57. DOI: 10.3390/ijms20010057. PMID: 30583612. PMCID: PMC6337576.
17. Gren ST, Grip O. 2016; Role of monocytes and intestinal macrophages in Crohn's disease and ulcerative colitis. Inflamm Bowel Dis. 22:1992–1998. DOI: 10.1097/MIB.0000000000000824. PMID: 27243595.
18. Aggeletopoulou I, Kalafateli M, Tsounis EP, Triantos C. 2024; Exploring the role of IL-1β in inflammatory bowel disease pathogenesis. Front Med (Lausanne). 11:1307394. DOI: 10.3389/fmed.2024.1307394. PMID: 38323035. PMCID: PMC10845338.
19. Coccia M, Harrison OJ, Schiering C, et al. 2012; IL-1β mediates chronic intestinal inflammation by promoting the accumulation of IL-17A secreting innate lymphoid cells and CD4(+) Th17 cells. J Exp Med. 209:1595–1609. DOI: 10.1084/jem.20111453. PMID: 22891275. PMCID: PMC3428945.
20. Kaminsky LW, Al-Sadi R, Ma TY. 2021; IL-1β and the intestinal epithelial tight junction barrier. Front Immunol. 12:767456. DOI: 10.3389/fimmu.2021.767456. PMID: 34759934. PMCID: PMC8574155.
21. Dinarello CA. 2011; Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood. 117:3720–3732. DOI: 10.1182/blood-2010-07-273417. PMID: 21304099. PMCID: PMC3083294.
22. Ferretti M, Casini-Raggi V, Pizarro TT, Eisenberg SP, Nast CC, Cominelli F. 1994; Neutralization of endogenous IL-1 receptor antagonist exacerbates and prolongs inflammation in rabbit immune colitis. J Clin Invest. 94:449–453. DOI: 10.1172/JCI117345. PMID: 8040288. PMCID: PMC296330.
23. Dosh RH, Jordan-Mahy N, Sammon C, Le Maitre C. 2019; Interleukin 1 is a key driver of inflammatory bowel disease-demonstration in a murine IL-1Ra knockout model. Oncotarget. 10:3559–3575. DOI: 10.18632/oncotarget.26894. PMID: 31191826. PMCID: PMC6544399.
24. Atreya R, Neurath MF. 2008; New therapeutic strategies for treatment of inflammatory bowel disease. Mucosal Immunol. 1:175–182. DOI: 10.1038/mi.2008.7. PMID: 19079177.
25. Kusugami K, Fukatsu A, Tanimoto M, et al. 1995; Elevation of interleukin-6 in inflammatory bowel disease is macrophage- and epithelial cell-dependent. Dig Dis Sci. 40:949–959. DOI: 10.1007/BF02064182. PMID: 7729284.
26. Pawłowska-Kamieniak A, Krawiec P, Pac-Kożuchowska E. 2021; Interleukin 6: biological significance and role in inflammatory bowel diseases. Adv Clin Exp Med. 30:465–469. DOI: 10.17219/acem/130356. PMID: 33908198.
27. Mitsuyama K, Toyonaga A, Sasaki E, et al. 1995; Soluble interleukin-6 receptors in inflammatory bowel disease: relation to circulating interleukin-6. Gut. 36:45–49. DOI: 10.1136/gut.36.1.45. PMID: 7890234. PMCID: PMC1382351.
28. Gross V, Andus T, Caesar I, Roth M, Schölmerich J. 1992; Evidence for continuous stimulation of interleukin-6 production in Crohn's disease. Gastroenterology. 102:514–519. DOI: 10.1016/0016-5085(92)90098-J. PMID: 1370661.
29. Carey R, Jurickova I, Ballard E, et al. 2008; Activation of an IL-6:STAT3-dependent transcriptome in pediatric-onset inflammatory bowel disease. Inflamm Bowel Dis. 14:446–457. DOI: 10.1002/ibd.20342. PMID: 18069684. PMCID: PMC2581837.
30. Atreya R, Mudter J, Finotto S, et al. 2000; Blockade of interleukin 6 trans signaling suppresses T-cell resistance against apoptosis in chronic intestinal inflammation: evidence in crohn disease and experimental colitis in vivo. Nat Med. 6:583–588. DOI: 10.1038/75068. PMID: 10802717.
31. Mudter J, Neurath MF. 2007; IL-6 signaling in inflammatory bowel disease: pathophysiological role and clinical relevance. Inflamm Bowel Dis. 13:1016–1023. DOI: 10.1002/ibd.20148. PMID: 17476678.
32. Shahini A, Shahini A. 2023; Role of interleukin-6-mediated inflammation in the pathogenesis of inflammatory bowel disease: focus on the available therapeutic approaches and gut microbiome. J Cell Commun Signal. 17:55–74. DOI: 10.1007/s12079-022-00695-x. PMID: 36112307. PMCID: PMC10030733.
33. Chen L, Ruan G, Cheng Y, Yi A, Chen D, Wei Y. 2022; The role of Th17 cells in inflammatory bowel disease and the research progress. Front Immunol. 13:1055914. DOI: 10.3389/fimmu.2022.1055914. PMID: 36700221. PMCID: PMC9870314.
34. Alhendi A, Naser SA. 2023; The dual role of interleukin-6 in Crohn's disease pathophysiology. Front Immunol. 14:1295230. DOI: 10.3389/fimmu.2023.1295230. PMID: 38106420. PMCID: PMC10722226.
35. Luettig J, Rosenthal R, Barmeyer C, Schulzke JD. 2015; Claudin-2 as a mediator of leaky gut barrier during intestinal inflammation. Tissue Barriers. 3:e977176. DOI: 10.4161/21688370.2014.977176. PMID: 25838982. PMCID: PMC4372021.
36. Prasad S, Mingrino R, Kaukinen K, et al. 2005; Inflammatory processes have differential effects on claudins 2, 3 and 4 in colonic epithelial cells. Lab Invest. 85:1139–1162. DOI: 10.1038/labinvest.3700316. PMID: 16007110.
37. Ye M, Joosse ME, Liu L, et al. 2020; Deletion of IL-6 exacerbates colitis and induces systemic inflammation in IL-10-deficient mice. J Crohns Colitis. 14:831–840. DOI: 10.1093/ecco-jcc/jjz176. PMID: 31679013. PMCID: PMC7346894.
38. Kuhn KA, Schulz HM, Regner EH, et al. 2018; Bacteroidales recruit IL-6-producing intraepithelial lymphocytes in the colon to promote barrier integrity. Mucosal Immunol. 11:357–368. DOI: 10.1038/mi.2017.55. PMID: 28812548. PMCID: PMC5815964.
39. Ishii K, Shirai T, Kakuta Y, et al. 2022; Development of severe colitis in Takayasu arteritis treated with tocilizumab. Clin Rheumatol. 41:1911–1918. DOI: 10.1007/s10067-022-06108-z. PMID: 35188603.
40. Borghini R, Vescovo M, Giordano C, Donato G, Picarelli A. 2021; Onset of suspected ulcerative colitis after treatment with tocilizumab in patient with celiac disease and juvenile idiopathic arthritis. Inflamm Bowel Dis. 27:e76–e78. DOI: 10.1093/ibd/izab036. PMID: 33616165.
41. Dragoni G, Innocenti T, Galli A. 2021; Biomarkers of inflammation in inflammatory bowel disease: how long before abandoning single-marker approaches? Dig Dis. 39:190–203. DOI: 10.1159/000511641. PMID: 32942275.
42. Nikolaus S, Waetzig GH, Butzin S, et al. 2018; Evaluation of interleukin-6 and its soluble receptor components sIL-6R and sgp130 as markers of inflammation in inflammatory bowel diseases. Int J Colorectal Dis. 33:927–936. DOI: 10.1007/s00384-018-3069-8. PMID: 29748708. PMCID: PMC6002455.
43. Carlini V, Noonan DM, Abdalalem E, et al. 2023; The multifaceted nature of IL-10: regulation, role in immunological homeostasis and its relevance to cancer, COVID-19 and post-COVID conditions. Front Immunol. 14:1161067. DOI: 10.3389/fimmu.2023.1161067. PMID: 37359549. PMCID: PMC10287165.
44. Couper KN, Blount DG, Riley EM. 2008; IL-10: the master regulator of immunity to infection. J Immunol. 180:5771–5777. DOI: 10.4049/jimmunol.180.9.5771. PMID: 18424693.
45. Jofra T, Galvani G, Cosorich I, et al. 2019; Experimental colitis in IL-10-deficient mice ameliorates in the absence of PTPN22. Clin Exp Immunol. 197:263–275. DOI: 10.1111/cei.13339. PMID: 31194881. PMCID: PMC6693971.
46. Kennedy RJ, Hoper M, Deodhar K, Erwin PJ, Kirk SJ, Gardiner KR. 2000; Interleukin 10-deficient colitis: new similarities to human inflammatory bowel disease. Br J Surg. 87:1346–1351. DOI: 10.1046/j.1365-2168.2000.01615.x. PMID: 11044159.
47. Sharifinejad N, Zaki-Dizaji M, Sepahvandi R, et al. 2022; The clinical, molecular, and therapeutic features of patients with IL10/IL10R deficiency: a systematic review. Clin Exp Immunol. 208:281–291. DOI: 10.1093/cei/uxac040. PMID: 35481870. PMCID: PMC9226142.
48. Aghamohamadi E, Asri N, Odak A, et al. 2022; Gene expression analysis of intestinal IL-8, IL-17 A and IL-10 in patients with celiac and inflammatory bowel diseases. Mol Biol Rep. 49:6085–6091. DOI: 10.1007/s11033-022-07397-y. PMID: 35526253.
49. Kelsall B. 2009; Interleukin-10 in inflammatory bowel disease. N Engl J Med. 361:2091–2093. DOI: 10.1056/NEJMe0909225. PMID: 19890110.
50. Buruiana FE, Solà I, Alonso-Coello P. 2010; Recombinant human interleukin 10 for induction of remission in Crohn's disease. Cochrane Database Syst Rev. 2010:CD005109. DOI: 10.1002/14651858.CD005109.pub3. PMID: 21069683. PMCID: PMC8864725.
51. Trinchieri G. 2003; Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol. 3:133–146. DOI: 10.1038/nri1001. PMID: 12563297.
52. Mannon PJ, Fuss IJ, Mayer L, et al. 2004; Anti-interleukin-12 antibody for active Crohn's disease. N Engl J Med. 351:2069–2079. DOI: 10.1056/NEJMoa033402. PMID: 15537905.
53. Nielsen OH, Kirman I, Rüdiger N, Hendel J, Vainer B. 2003; Upregulation of interleukin-12 and -17 in active inflammatory bowel disease. Scand J Gastroenterol. 38:180–185. DOI: 10.1080/00365520310000672. PMID: 12678335.
54. Monteleone G, Biancone L, Marasco R, et al. 1997; Interleukin 12 is expressed and actively released by Crohn's disease intestinal lamina propria mononuclear cells. Gastroenterology. 112:1169–1178. DOI: 10.1016/S0016-5085(97)70128-8. PMID: 9098000.
55. Parrello T, Monteleone G, Cucchiara S, et al. 2000; Up-regulation of the IL-12 receptor beta 2 chain in Crohn's disease. J Immunol. 165:7234–7239. DOI: 10.4049/jimmunol.165.12.7234. PMID: 11120856.
56. Neurath MF, Fuss I, Kelsall BL, Stüber E, Strober W. 1995; Antibodies to interleukin 12 abrogate established experimental colitis in mice. J Exp Med. 182:1281–1290. DOI: 10.1084/jem.182.5.1281. PMID: 7595199. PMCID: PMC2192205.
57. Kullberg MC, Jankovic D, Feng CG, et al. 2006; IL-23 plays a key role in Helicobacter hepaticus-induced T cell-dependent colitis. J Exp Med. 203:2485–2494. DOI: 10.1084/jem.20061082. PMID: 17030948. PMCID: PMC2118119.
58. Murphy CA, Langrish CL, Chen Y, et al. 2003; Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J Exp Med. 198:1951–1957. DOI: 10.1084/jem.20030896. PMID: 14662908. PMCID: PMC2194162.
59. Cua DJ, Sherlock J, Chen Y, et al. 2003; Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature. 421:744–748. DOI: 10.1038/nature01355. PMID: 12610626.
60. Zundler S, Neurath MF. 2015; Interleukin-12: functional activities and implications for disease. Cytokine Growth Factor Rev. 26:559–568. DOI: 10.1016/j.cytogfr.2015.07.003. PMID: 26182974.
61. Colombo MP, Trinchieri G. 2002; Interleukin-12 in anti-tumor immunity and immunotherapy. Cytokine Growth Factor Rev. 13:155–168. DOI: 10.1016/S1359-6101(01)00032-6. PMID: 11900991.
62. Leonard JP, Sherman ML, Fisher GL, et al. 1997; Effects of single-dose interleukin-12 exposure on interleukin-12-associated toxicity and interferon-gamma production. Blood. 90:2541–2548.
63. Iwakura Y, Ishigame H, Saijo S, Nakae S. 2011; Functional specialization of interleukin-17 family members. Immunity. 34:149–162. DOI: 10.1016/j.immuni.2011.02.012. PMID: 21349428.
64. Gaffen SL. 2009; Structure and signalling in the IL-17 receptor family. Nat Rev Immunol. 9:556–567. DOI: 10.1038/nri2586. PMID: 19575028. PMCID: PMC2821718.
65. Weaver CT, Elson CO, Fouser LA, Kolls JK. 2013; The Th17 pathway and inflammatory diseases of the intestines, lungs, and skin. Annu Rev Pathol. 8:477–512. DOI: 10.1146/annurev-pathol-011110-130318. PMID: 23157335. PMCID: PMC3965671.
66. Lee CR, Park SG. 2013; Interleukin-17 in the inflammatory bowel disease. Hanyang Med Rev. 33:27–32. DOI: 10.7599/hmr.2013.33.1.27.
67. Ouyang W, Kolls JK, Zheng Y. 2008; The biological functions of T helper 17 cell effector cytokines in inflammation. Immunity. 28:454–467. DOI: 10.1016/j.immuni.2008.03.004. PMID: 18400188. PMCID: PMC3424508.
68. Ye P, Rodriguez FH, Kanaly S, et al. 2001; Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. J Exp Med. 194:519–527. DOI: 10.1084/jem.194.4.519. PMID: 11514607. PMCID: PMC2193502.
69. Liang SC, Tan XY, Luxenberg DP, et al. 2006; Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med. 203:2271–2279. DOI: 10.1084/jem.20061308. PMID: 16982811. PMCID: PMC2118116.
70. Fujino S, Andoh A, Bamba S, et al. 2003; Increased expression of interleukin 17 in inflammatory bowel disease. Gut. 52:65–70. DOI: 10.1136/gut.52.1.65. PMID: 12477762. PMCID: PMC1773503.
71. Menesy A, Hammad M, Aref S, Abozeid FAM. 2024; Level of interleukin 17 in inflammatory bowel disease and its relation with disease activity. BMC Gastroenterol. 24:135. DOI: 10.1186/s12876-024-03218-7. PMID: 38622545. PMCID: PMC11020998.
72. Sahin A, Calhan T, Cengiz M, et al. 2014; Serum interleukin 17 levels in patients with Crohn's disease: real life data. Dis Markers. 2014:690853. DOI: 10.1155/2014/690853. PMID: 25140070. PMCID: PMC4124784.
73. Lucaciu LA, Ilieș M, Vesa ȘC, et al. 2021; Serum interleukin (IL)-23 and IL-17 profile in inflammatory bowel disease (IBD) patients could differentiate between severe and non-severe disease. J Pers Med. 11:1130. DOI: 10.3390/jpm11111130. PMID: 34834482. PMCID: PMC8621192.
74. Zhao N, Liu C, Li N, et al. 2023; Role of Interleukin-22 in ulcerative colitis. Biomed Pharmacother. 159:114273. DOI: 10.1016/j.biopha.2023.114273. PMID: 36696801.
75. Perusina Lanfranca M, Lin Y, Fang J, Zou W, Frankel T. 2016; Biological and pathological activities of interleukin-22. J Mol Med (Berl). 94:523–534. DOI: 10.1007/s00109-016-1391-6. PMID: 26923718. PMCID: PMC4860114.
76. Kim K, Kim G, Kim JY, Yun HJ, Lim SC, Choi HS. 2014; Interleukin-22 promotes epithelial cell transformation and breast tumorigenesis via MAP3K8 activation. Carcinogenesis. 35:1352–1361. DOI: 10.1093/carcin/bgu044. PMID: 24517997.
77. Li LJ, Gong C, Zhao MH, Feng BS. 2014; Role of interleukin-22 in inflammatory bowel disease. World J Gastroenterol. 20:18177–18188. DOI: 10.3748/wjg.v20.i48.18177. PMID: 25561785. PMCID: PMC4277955.
78. Radaeva S, Sun R, Pan HN, Hong F, Gao B. 2004; Interleukin 22 (IL-22) plays a protective role in T cell-mediated murine hepatitis: IL-22 is a survival factor for hepatocytes via STAT3 activation. Hepatology. 39:1332–1342. DOI: 10.1002/hep.20184. PMID: 15122762.
79. Zenewicz LA, Yancopoulos GD, Valenzuela DM, Murphy AJ, Stevens S, Flavell RA. 2008; Innate and adaptive interleukin-22 protects mice from inflammatory bowel disease. Immunity. 29:947–957. DOI: 10.1016/j.immuni.2008.11.003. PMID: 19100701. PMCID: PMC3269819.
80. Sugimoto K, Ogawa A, Mizoguchi E, et al. 2008; IL-22 ameliorates intestinal inflammation in a mouse model of ulcerative colitis. J Clin Invest. 118:534–544. DOI: 10.1172/JCI33194. PMID: 18172556. PMCID: PMC2157567.
81. Huber S, Gagliani N, Zenewicz LA, et al. 2012; IL-22BP is regulated by the inflammasome and modulates tumorigenesis in the intestine. Nature. 491:259–263. DOI: 10.1038/nature11535. PMID: 23075849. PMCID: PMC3493690.
82. Łukasik Z, Gracey E, Venken K, Ritchlin C, Elewaut D. 2021; Crossing the boundaries: IL-23 and its role in linking inflammation of the skin, gut and joints. Rheumatology (Oxford). 60(Suppl 4):iv16–iv27. DOI: 10.1093/rheumatology/keab385. PMID: 33961030. PMCID: PMC8527243.
83. Oppmann B, Lesley R, Blom B, et al. 2000; Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity. 13:715–725. DOI: 10.1016/S1074-7613(00)00070-4. PMID: 11114383.
84. Xiong DK, Shi X, Han MM, et al. 2022; The regulatory mechanism and potential application of IL-23 in autoimmune diseases. Front Pharmacol. 13:982238. DOI: 10.3389/fphar.2022.982238. PMID: 36176425. PMCID: PMC9514453.
85. Ahern PP, Schiering C, Buonocore S, et al. 2010; Interleukin-23 drives intestinal inflammation through direct activity on T cells. Immunity. 33:279–288. DOI: 10.1016/j.immuni.2010.08.010. PMID: 20732640. PMCID: PMC3078329.
86. Mangan PR, Harrington LE, O'Quinn DB, et al. 2006; Transforming growth factor-beta induces development of the T(H)17 lineage. Nature. 441:231–234. DOI: 10.1038/nature04754. PMID: 16648837.
87. Izcue A, Hue S, Buonocore S, et al. 2008; Interleukin-23 restrains regulatory T cell activity to drive T cell-dependent colitis. Immunity. 28:559–570. DOI: 10.1016/j.immuni.2008.02.019. PMID: 18400195. PMCID: PMC2292821.
88. Geremia A, Arancibia-Cárcamo CV, Fleming MP, et al. 2011; IL-23-responsive innate lymphoid cells are increased in inflammatory bowel disease. J Exp Med. 208:1127–1133. DOI: 10.1084/jem.20101712. PMID: 21576383. PMCID: PMC3173242.
89. Takayama T, Kamada N, Chinen H, et al. 2010; Imbalance of NKp44(+)NKp46(-) and NKp44(-)NKp46(+) natural killer cells in the intestinal mucosa of patients with Crohn's disease. Gastroenterology. 139:882–892.e1-e3. DOI: 10.1053/j.gastro.2010.05.040. PMID: 20638936.
90. Pidasheva S, Trifari S, Phillips A, et al. 2011; Functional studies on the IBD susceptibility gene IL23R implicate reduced receptor function in the protective genetic variant R381Q. PLoS One. 6:e25038. DOI: 10.1371/journal.pone.0025038. PMID: 22022372. PMCID: PMC3192060.
91. Duerr RH, Taylor KD, Brant SR, et al. 2006; A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science. 314:1461–1463. DOI: 10.1126/science.1135245. PMID: 17068223. PMCID: PMC4410764.
92. Sivanesan D, Beauchamp C, Quinou C, et al. 2016; IL23R (interleukin 23 receptor) variants protective against inflammatory bowel diseases (IBD) display loss of function due to impaired protein stability and intracellular trafficking. J Biol Chem. 291:8673–8685. DOI: 10.1074/jbc.M116.715870. PMID: 26887945. PMCID: PMC4861437.
93. Liu Z, Yadav PK, Xu X, et al. 2011; The increased expression of IL-23 in inflammatory bowel disease promotes intraepithelial and lamina propria lymphocyte inflammatory responses and cytotoxicity. J Leukoc Biol. 89:597–606. DOI: 10.1189/jlb.0810456. PMID: 21227898.
94. Mocci G, Tursi A, Onidi FM, Usai-Satta P, Pes GM, Dore MP. 2024; Ustekinumab in the treatment of inflammatory bowel diseases: evolving paradigms. J Clin Med. 13:1519. DOI: 10.3390/jcm13051519. PMID: 38592377. PMCID: PMC10933994.
95. Hanauer SB, Sandborn WJ, Feagan BG, et al. 2020; IM-UNITI: three-year efficacy, safety, and immunogenicity of ustekinumab treatment of Crohn's disease. J Crohns Colitis. 14:23–32. DOI: 10.1093/ecco-jcc/jjz110. PMID: 31158271.
96. Zhou H, Wang F, Wan J, et al. 2023; Systematic review and meta-analysis of observational studies on the effectiveness and safety of ustekinumab among patients with inflammatory bowel disease in eastern and western countries. J Clin Med. 12:1894. DOI: 10.3390/jcm12051894. PMID: 36902681. PMCID: PMC10004158.
97. Yiu TH, Ko Y, Pudipeddi A, Natale P, Leong RW. 2024; Meta-analysis: persistence of advanced therapies in the treatment of inflammatory bowel disease. Aliment Pharmacol Ther. 59:1312–1334. DOI: 10.1111/apt.18006. PMID: 38651771.
98. Johnson AM, Barsky M, Ahmed W, et al. 2023; The real-world effectiveness and safety of ustekinumab in the treatment of Crohn's disease: results from the SUCCESS consortium. Am J Gastroenterol. 118:317–328. DOI: 10.14309/ajg.0000000000002047. PMID: 36191274.
99. Brewer GMG, Salem G, Afzal MA, et al. 2021; Ustekinumab is effective for perianal fistulising Crohn's disease: a real-world experience and systematic review with meta-analysis. BMJ Open Gastroenterol. 8:e000702. DOI: 10.1136/bmjgast-2021-000702. PMID: 34920992. PMCID: PMC8685938.
100. Mañosa M, Fernández-Clotet A, Nos P, et al. 2023; Ustekinumab and vedolizumab for the prevention of postoperative recurrence of Crohn's disease: results from the ENEIDA registry. Dig Liver Dis. 55:46–52. DOI: 10.1016/j.dld.2022.07.013. PMID: 35948459.
101. Macaluso FS, Grova M, Mocciaro F, et al. 2023; Ustekinumab is a promising option for the treatment of postoperative recurrence of Crohn's disease. J Gastroenterol Hepatol. 38:1503–1509. DOI: 10.1111/jgh.16208. PMID: 37148148.
102. Guillo L, D'Amico F, Danese S, Peyrin-Biroulet L. 2021; Ustekinumab for extra-intestinal manifestations of inflammatory bowel disease: a systematic literature review. J Crohns Colitis. 15:1236–1243. DOI: 10.1093/ecco-jcc/jjaa260. PMID: 33367674.
103. Gordon H, Burisch J, Ellul P, et al. 2024; ECCO guidelines on extraintestinal manifestations in inflammatory bowel disease. J Crohns Colitis. 18:1–37. DOI: 10.1093/ecco-jcc/jjad108. PMID: 37351850.
104. Chateau T, Angioi K, Peyrin-Biroulet L. 2020; Two cases of successful ustekinumab treatment for non-infectious uveitis associated with Crohn's disease. J Crohns Colitis. 14:571. DOI: 10.1093/ecco-jcc/jjz167. PMID: 31606743.
105. Biemans VBC, van der Meulen-de Jong AE, van der Woude CJ, et al. 2020; Ustekinumab for Crohn's disease: results of the ICC registry, a nationwide prospective observational cohort study. J Crohns Colitis. 14:33–45. DOI: 10.1093/ecco-jcc/jjz119. PMID: 31219157. PMCID: PMC7142409.
106. Strand V, Balsa A, Al-Saleh J, et al. 2017; Immunogenicity of biologics in chronic inflammatory diseases: a systematic review. BioDrugs. 31:299–316. DOI: 10.1007/s40259-017-0231-8. PMID: 28612180. PMCID: PMC5548814.
107. Bots SJ, Parker CE, Brandse JF, et al. 2021; Anti-drug antibody formation against biologic agents in inflammatory bowel disease: a systematic review and meta-analysis. BioDrugs. 35:715–733. DOI: 10.1007/s40259-021-00507-5. PMID: 34797516. PMCID: PMC9826743.
108. Ghosh S, Feagan BG, Ott E, et al. 2024; Safety of ustekinumab in inflammatory bowel disease: pooled safety analysis through 5 years in Crohn's disease and 4 years in ulcerative colitis. J Crohns Colitis. 18:1091–1101. DOI: 10.1093/ecco-jcc/jjae013. PMID: 38310565. PMCID: PMC11302965.
109. Cho SI, Kang S, Kim YE, Lee JY, Jo SJ. 2020; Ustekinumab does not increase tuberculosis risk: results from a national database in South Korea. J Am Acad Dermatol. 82:1243–1245. DOI: 10.1016/j.jaad.2019.12.033. PMID: 31866266.
110. Choi MG, Ye BD, Yang SK, Shim TS, Jo KW, Park SH. 2022; The risk of tuberculosis in patients with inflammatory bowel disease treated with vedolizumab or ustekinumab in Korea. J Korean Med Sci. 37:e107. DOI: 10.3346/jkms.2022.37.e107. PMID: 35411727. PMCID: PMC9001185.
111. Shin SH, Park SH. 2022; Viral hepatitis in patients with inflammatory bowel disease. Korean J Gastroenterol. 80:51–59. DOI: 10.4166/kjg.2022.096. PMID: 36004631.
112. Ting SW, Chen YC, Huang YH. 2018; Risk of hepatitis B reactivation in patients with psoriasis on ustekinumab. Clin Drug Investig. 38:873–880. DOI: 10.1007/s40261-018-0671-z. PMID: 29968197.
113. Akiyama S, Steinberg JM, Kobayashi M, Suzuki H, Tsuchiya K. 2023; Pregnancy and medications for inflammatory bowel disease: an updated narrative review. World J Clin Cases. 11:1730–1740. DOI: 10.12998/wjcc.v11.i8.1730. PMID: 36969991. PMCID: PMC10037280.
114. Mitrova K, Pipek B, Bortlik M, et al. 2022; Safety of ustekinumab and vedolizumab during pregnancy-pregnancy, neonatal, and infant outcome: a prospective multicentre study. J Crohns Colitis. 16:1808–1815. DOI: 10.1093/ecco-jcc/jjac086. PMID: 35708729.
115. Avni-Biron I, Mishael T, Zittan E, et al. 2022; Ustekinumab during pregnancy in patients with inflammatory bowel disease: a prospective multicentre cohort study. Aliment Pharmacol Ther. 56:1361–1369. DOI: 10.1111/apt.17224. PMID: 36168705.
116. Abraham BP, Ott E, Busse C, et al. 2022; Ustekinumab exposure in pregnant women from inflammatory bowel disease clinical trials: pregnancy outcomes through up to 5 years in Crohn's disease and 2 years in ulcerative colitis. Crohns Colitis 360. 4:otac025. DOI: 10.1093/crocol/otac025. PMID: 36777422. PMCID: PMC9802371.
117. Mahadevan U, Naureckas S, Tikhonov I, et al. 2022; Pregnancy outcomes following periconceptional or gestational exposure to ustekinumab: review of cases reported to the manufacturer's global safety database. Aliment Pharmacol Ther. 56:477–490. DOI: 10.1111/apt.16960. PMID: 35560249.
118. Chugh R, Long MD, Jiang Y, et al. 2024; Maternal and neonatal outcomes in vedolizumab- and ustekinumab-exposed pregnancies: results from the PIANO registry. Am J Gastroenterol. 119:468–476. DOI: 10.14309/ajg.0000000000002553. PMID: 37796648.
119. Julsgaard M, Wieringa JW, Baunwall SMD, et al. Infant ustekinumab clearance, risk of infection, and development after exposure during pregnancy. Clin Gastroenterol Hepatol. 2024; Jan. 24. doi: 10.1016/j.cgh.2024.01.008. DOI: 10.1016/j.cgh.2024.01.008.
120. Sewell GW, Kaser A. 2022; Interleukin-23 in the pathogenesis of inflammatory bowel disease and implications for therapeutic intervention. J Crohns Colitis. 16(Supplement_2):ii3–ii19. DOI: 10.1093/ecco-jcc/jjac034. PMID: 35553667. PMCID: PMC9097674.
121. Feagan BG, Sandborn WJ, D'Haens G, et al. 2017; Induction therapy with the selective interleukin-23 inhibitor risankizumab in patients with moderate-to-severe Crohn's disease: a randomised, double-blind, placebo-controlled phase 2 study. Lancet. 389:1699–1709. DOI: 10.1016/S0140-6736(17)30570-6. PMID: 28411872.
122. Feagan BG, Panés J, Ferrante M, et al. 2018; Risankizumab in patients with moderate to severe Crohn's disease: an open-label extension study. Lancet Gastroenterol Hepatol. 3:671–680. DOI: 10.1016/S2468-1253(18)30233-4. PMID: 30056030.
123. D'Haens G, Panaccione R, Baert F, et al. Risankizumab as induction therapy for Crohn's disease: results from the phase 3 ADVANCE and MOTIVATE induction trials. Lancet. 2022; 399:2015–2030. DOI: 10.1016/S0140-6736(22)00467-6. PMID: 35644154.
124. Ferrante M, Panaccione R, Baert F, et al. 2022; Risankizumab as maintenance therapy for moderately to severely active Crohn's disease: results from the multicentre, randomised, double-blind, placebo-controlled, withdrawal phase 3 FORTIFY maintenance trial. Lancet. 399:2031–2046. DOI: 10.1016/S0140-6736(22)00466-4. PMID: 35644155.
125. Risankizumab induction therapy in patients with moderately to severely active ulcerative colitis: efficacy and safety in the randomized phase 3 INSPIRE study. Gastroenterol Hepatol (N Y). 2023; 19(12 Suppl 9):9–10.
126. Louis E, Panaccione R, Parkes G, et al. 2024; Risankizumab maintenance therapy in patients with moderately to severely active ulcerative colitis: efficacy and safety in the randomised phase 3 COMMAND study. J Crohns Colitis. 18(Supplement_1):i10–i12. DOI: 10.1093/ecco-jcc/jjad212.0006.
127. Sands BE, Peyrin-Biroulet L, Kierkus J, et al. 2022; Efficacy and safety of mirikizumab in a randomized phase 2 study of patients with Crohn's disease. Gastroenterology. 162:495–508. DOI: 10.1053/j.gastro.2021.10.050. PMID: 34748774.
128. Sandborn WJ, Ferrante M, Bhandari BR, et al. 2020; Efficacy and safety of mirikizumab in a randomized phase 2 study of patients with ulcerative colitis. Gastroenterology. 158:537–549.e10. DOI: 10.1053/j.gastro.2019.08.043. PMID: 31493397.
129. D'Haens G, Dubinsky M, Kobayashi T, et al. 2023; Mirikizumab as induction and maintenance therapy for ulcerative colitis. N Engl J Med. 388:2444–2455. DOI: 10.1056/NEJMoa2207940. PMID: 37379135.
130. Sands BE, D'Haens G, Clemow DB, et al. Two-year efficacy and safety of mirikizumab following 104 weeks of continuous treatment for ulcerative colitis: results from the LUCENT-3 open-label extension study. Inflamm Bowel Dis. 2024; Mar. 9. doi: 10.1093/ibd/izae024. DOI: 10.1093/ibd/izae024. PMID: 38459910.
131. Zurba Y, Gros B, Shehab M. 2023; Exploring the pipeline of novel therapies for inflammatory bowel disease; state of the art review. Biomedicines. 11:747. DOI: 10.3390/biomedicines11030747. PMID: 36979724. PMCID: PMC10045261.
132. Sandborn WJ, D'Haens GR, Reinisch W, et al. 2022; Guselkumab for the treatment of Crohn's disease: induction results from the phase 2 GALAXI-1 study. Gastroenterology. 162:1650–1664. e8. DOI: 10.1053/j.gastro.2022.01.047. PMID: 35134323.
133. Danese S, Panaccione R, Feagan BG, et al. 2024; Efficacy and safety of 48 weeks of guselkumab for patients with Crohn's disease: maintenance results from the phase 2, randomised, double-blind GALAXI-1 trial. Lancet Gastroenterol Hepatol. 9:133–146. DOI: 10.1016/S2468-1253(23)00318-7. PMID: 38104569.
134. Panaccione R, Danese S, Feagan BG, et al. 2024; Efficacy and safety of guselkumab therapy in patients with moderately to severely active Crohn's disease: results of the GALAXI 2 G 3 phase 3 studies. Gastroenterology. 166:1057b. DOI: 10.1016/S0016-5085(24)05019-4.
135. Peyrin-Biroulet L, Allegretti JR, Rubin DT, et al. 2023; Guselkumab in patients with moderately to severely active ulcerative colitis: QUASAR phase 2b induction study. Gastroenterology. 165:1443–1457. DOI: 10.1053/j.gastro.2023.08.038. PMID: 37659673.
136. The efficacy and safety of guselkumab induction therapy in patients with moderately to severely active ulcerative colitis: results from the phase 3 QUASAR induction study. Gastroenterol Hepatol (N Y). 2023; 19(7 Suppl 3):9–10.
137. Rubin DT, Allegretti JR, Panés J, et al. 2024; The efficacy and safety of guselkumab as maintenance therapy in patients with moderately to severely active ulcerative colitis: results from the phase 3 QUASAR maintenance study. Gastroenterology. 166:S–180. DOI: 10.1016/S0016-5085(24)00910-7.
138. Köck K, Pan WJ, Gow JM, et al. 2015; Preclinical development of AMG 139, a human antibody specifically targeting IL-23. Br J Pharmacol. 172:159–172. DOI: 10.1111/bph.12904. PMID: 25205227. PMCID: PMC4280975.
139. Sands BE, Chen J, Feagan BG, et al. 2017; Efficacy and safety of MEDI2070, an antibody against interleukin 23, in patients with moderate to severe Crohn's disease: a phase 2a study. Gastroenterology. 153:77–86.e6. DOI: 10.1053/j.gastro.2017.03.049. PMID: 28390867.
140. Danese S, Beaton A, Duncan EA, et al. 2023; Long-term safety of brazikumab in the open-label period of a randomized phase 2a study of patients with Crohn's disease. BMC Gastroenterol. 23:451. DOI: 10.1186/s12876-023-03078-7. PMID: 38124112. PMCID: PMC10731694.
141. Sands BE, Irving PM, Hoops T, et al. 2022; Ustekinumab versus adalimumab for induction and maintenance therapy in biologic-naive patients with moderately to severely active Crohn's disease: a multicentre, randomised, double-blind, parallel-group, phase 3b trial. Lancet. 399:2200–2211. DOI: 10.1016/S0140-6736(22)00688-2. PMID: 35691323.
142. Peyrin-Biroulet L, Bossuyt P, Regueiro M, et al. 2024; Risankizumab Versus ustekinumab for the achievement of endoscopic outcomes in patients with moderate-to-severe Crohn's disease: results from the phase 3b SEQUENCE trial. J Crohns Colitis. 18(Supplement_1):i90–i91. DOI: 10.1093/ecco-jcc/jjad212.0050.
143. Dubinsky MC, D'Haens G, Atreya R, et al. 2024; Risankizumab versus ustekinumab for the achievement of clinical outcomes and symptom improvement in patients with moderate to severe Crohn's disease: results from the phase 3b SEQUENCE trial. J Crohns Colitis. 18(Supplement_1):i65–i66. DOI: 10.1093/ecco-jcc/jjad212.0036.
144. Dignass A, Redondo I, Richards M, Hartz S, Zaremba-Pechmann L, Hoque S. 2024; P105 Mirikizumab versus ustekinumab in moderately to severely active ulcerative colitis: maintenance number needed to treat from a network meta-analysis. Gut. 73:A113. DOI: 10.1136/gutjnl-2024-BSG.187.
145. Singh S, Murad MH, Fumery M, et al. 2021; Comparative efficacy and safety of biologic therapies for moderate-to-severe Crohn's disease: a systematic review and network meta-analysis. Lancet Gastroenterol Hepatol. 6:1002–1014. DOI: 10.1016/S2468-1253(21)00312-5. PMID: 34688373.
146. Barberio B, Gracie DJ, Black CJ, Ford AC. 2023; Efficacy of biological therapies and small molecules in induction and maintenance of remission in luminal Crohn's disease: systematic review and network meta-analysis. Gut. 72:264–274. DOI: 10.1136/gutjnl-2022-328052. PMID: 35907636.
147. Chu X, Biao Y, Liu C, et al. 2023; Network meta-analysis on efficacy and safety of different biologics for ulcerative colitis. BMC Gastroenterol. 23:346. DOI: 10.1186/s12876-023-02938-6. PMID: 37803294. PMCID: PMC10557260.
148. Burr NE, Gracie DJ, Black CJ, Ford AC. 2022; Efficacy of biological therapies and small molecules in moderate to severe ulcerative colitis: systematic review and network meta-analysis. Gut. 71:1976–1987. DOI: 10.1136/gutjnl-2021-326390. PMID: 34937767.
149. Click B, Regueiro M. 2019; A practical guide to the safety and monitoring of new IBD therapies. Inflamm Bowel Dis. 25:831–842. DOI: 10.1093/ibd/izy313. PMID: 30312391. PMCID: PMC6458527.
150. Juillerat P, Grueber MM, Ruetsch R, Santi G, Vuillèmoz M, Michetti P. 2022; Positioning biologics in the treatment of IBD: a practical guide - which mechanism of action for whom? Curr Res Pharmacol Drug Discov. 3:100104. DOI: 10.1016/j.crphar.2022.100104. PMID: 35570855. PMCID: PMC9092374.
Full Text Links
  • KJG
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr