2. Wang R, Li Z, Liu S, Zhang D. Global, regional and national burden of inflammatory bowel disease in 204 countries and territories from 1990 to 2019: a systematic analysis based on the Global Burden of Disease Study 2019. BMJ Open. 2023; 13:e065186. DOI:
10.1136/bmjopen-2022-065186. PMID:
36977543. PMCID:
PMC10069527.
3. Perler BK, Ungaro R, Baird G, et al. 2019; Presenting symptoms in inflammatory bowel disease: descriptive analysis of a community-based inception cohort. BMC Gastroenterol. 19:47. DOI:
10.1186/s12876-019-0963-7. PMID:
30940072. PMCID:
PMC6446285.
4. Seyedian SS, Nokhostin F, Malamir MD. 2019; A review of the diagnosis, prevention, and treatment methods of inflammatory bowel disease. J Med Life. 12:113–122. DOI:
10.25122/jml-2018-0075. PMID:
31406511. PMCID:
PMC6685307.
5. Muzammil MA, Fariha F, Patel T, et al. 2023; Advancements in inflammatory bowel disease: a narrative review of diagnostics, management, epidemiology, prevalence, patient outcomes, quality of life, and clinical presentation. Cureus. 15:e41120. DOI:
10.7759/cureus.41120.
6. Hanauer SB, Feagan BG, Lichtenstein GR, et al. 2002; Maintenance infliximab for Crohn's disease: the ACCENT I randomised trial. Lancet. 359:1541–1549. DOI:
10.1016/S0140-6736(02)08512-4. PMID:
12047962.
9. Sands BE, Sandborn WJ, Panaccione R, et al. 2019; Ustekinumab as induction and maintenance therapy for ulcerative colitis. N Engl J Med. 381:1201–1214. DOI:
10.1056/NEJMoa1900750. PMID:
31553833.
10. Feagan BG, Sandborn WJ, Gasink C, et al. 2016; Ustekinumab as induction and maintenance therapy for Crohn's disease. N Engl J Med. 375:1946–1960. DOI:
10.1056/NEJMoa1602773. PMID:
27959607.
11. Deepak P, Sandborn WJ. 2017; Ustekinumab and anti-interleukin-23 agents in Crohn's disease. Gastroenterol Clin North Am. 46:603–626. DOI:
10.1016/j.gtc.2017.05.013. PMID:
28838418.
12. Levin AA, Gottlieb AB. 2014; Specific targeting of interleukin-23p19 as effective treatment for psoriasis. J Am Acad Dermatol. 70:555–561. DOI:
10.1016/j.jaad.2013.10.043. PMID:
24373779.
14. Muro M, Mrowiec A. 2015; Interleukin (IL)-1 gene cluster in inflammatory bowel disease: is IL-1RA implicated in the disease onset and outcome? Dig Dis Sci. 60:1126–1128. DOI:
10.1007/s10620-015-3571-6. PMID:
25875754.
15. Andus T, Daig R, Vogl D, et al. 1997; Imbalance of the interleukin 1 system in colonic mucosa--association with intestinal inflammation and interleukin 1 receptor antagonist [corrected] genotype 2. Gut. 41:651–657. DOI:
10.1136/gut.41.5.651. PMID:
9414973. PMCID:
PMC1891562.
16. Ranson N, Veldhuis M, Mitchell B, et al. 2019; NLRP3-dependent and-independent processing of interleukin (IL)-1β in active ulcerative colitis. Int J Mol Sci. 20:57. DOI:
10.3390/ijms20010057. PMID:
30583612. PMCID:
PMC6337576.
17. Gren ST, Grip O. 2016; Role of monocytes and intestinal macrophages in Crohn's disease and ulcerative colitis. Inflamm Bowel Dis. 22:1992–1998. DOI:
10.1097/MIB.0000000000000824. PMID:
27243595.
18. Aggeletopoulou I, Kalafateli M, Tsounis EP, Triantos C. 2024; Exploring the role of IL-1β in inflammatory bowel disease pathogenesis. Front Med (Lausanne). 11:1307394. DOI:
10.3389/fmed.2024.1307394. PMID:
38323035. PMCID:
PMC10845338.
19. Coccia M, Harrison OJ, Schiering C, et al. 2012; IL-1β mediates chronic intestinal inflammation by promoting the accumulation of IL-17A secreting innate lymphoid cells and CD4(+) Th17 cells. J Exp Med. 209:1595–1609. DOI:
10.1084/jem.20111453. PMID:
22891275. PMCID:
PMC3428945.
22. Ferretti M, Casini-Raggi V, Pizarro TT, Eisenberg SP, Nast CC, Cominelli F. 1994; Neutralization of endogenous IL-1 receptor antagonist exacerbates and prolongs inflammation in rabbit immune colitis. J Clin Invest. 94:449–453. DOI:
10.1172/JCI117345. PMID:
8040288. PMCID:
PMC296330.
23. Dosh RH, Jordan-Mahy N, Sammon C, Le Maitre C. 2019; Interleukin 1 is a key driver of inflammatory bowel disease-demonstration in a murine IL-1Ra knockout model. Oncotarget. 10:3559–3575. DOI:
10.18632/oncotarget.26894. PMID:
31191826. PMCID:
PMC6544399.
24. Atreya R, Neurath MF. 2008; New therapeutic strategies for treatment of inflammatory bowel disease. Mucosal Immunol. 1:175–182. DOI:
10.1038/mi.2008.7. PMID:
19079177.
25. Kusugami K, Fukatsu A, Tanimoto M, et al. 1995; Elevation of interleukin-6 in inflammatory bowel disease is macrophage- and epithelial cell-dependent. Dig Dis Sci. 40:949–959. DOI:
10.1007/BF02064182. PMID:
7729284.
26. Pawłowska-Kamieniak A, Krawiec P, Pac-Kożuchowska E. 2021; Interleukin 6: biological significance and role in inflammatory bowel diseases. Adv Clin Exp Med. 30:465–469. DOI:
10.17219/acem/130356. PMID:
33908198.
27. Mitsuyama K, Toyonaga A, Sasaki E, et al. 1995; Soluble interleukin-6 receptors in inflammatory bowel disease: relation to circulating interleukin-6. Gut. 36:45–49. DOI:
10.1136/gut.36.1.45. PMID:
7890234. PMCID:
PMC1382351.
28. Gross V, Andus T, Caesar I, Roth M, Schölmerich J. 1992; Evidence for continuous stimulation of interleukin-6 production in Crohn's disease. Gastroenterology. 102:514–519. DOI:
10.1016/0016-5085(92)90098-J. PMID:
1370661.
29. Carey R, Jurickova I, Ballard E, et al. 2008; Activation of an IL-6:STAT3-dependent transcriptome in pediatric-onset inflammatory bowel disease. Inflamm Bowel Dis. 14:446–457. DOI:
10.1002/ibd.20342. PMID:
18069684. PMCID:
PMC2581837.
30. Atreya R, Mudter J, Finotto S, et al. 2000; Blockade of interleukin 6 trans signaling suppresses T-cell resistance against apoptosis in chronic intestinal inflammation: evidence in crohn disease and experimental colitis in vivo. Nat Med. 6:583–588. DOI:
10.1038/75068. PMID:
10802717.
31. Mudter J, Neurath MF. 2007; IL-6 signaling in inflammatory bowel disease: pathophysiological role and clinical relevance. Inflamm Bowel Dis. 13:1016–1023. DOI:
10.1002/ibd.20148. PMID:
17476678.
32. Shahini A, Shahini A. 2023; Role of interleukin-6-mediated inflammation in the pathogenesis of inflammatory bowel disease: focus on the available therapeutic approaches and gut microbiome. J Cell Commun Signal. 17:55–74. DOI:
10.1007/s12079-022-00695-x. PMID:
36112307. PMCID:
PMC10030733.
33. Chen L, Ruan G, Cheng Y, Yi A, Chen D, Wei Y. 2022; The role of Th17 cells in inflammatory bowel disease and the research progress. Front Immunol. 13:1055914. DOI:
10.3389/fimmu.2022.1055914. PMID:
36700221. PMCID:
PMC9870314.
35. Luettig J, Rosenthal R, Barmeyer C, Schulzke JD. 2015; Claudin-2 as a mediator of leaky gut barrier during intestinal inflammation. Tissue Barriers. 3:e977176. DOI:
10.4161/21688370.2014.977176. PMID:
25838982. PMCID:
PMC4372021.
36. Prasad S, Mingrino R, Kaukinen K, et al. 2005; Inflammatory processes have differential effects on claudins 2, 3 and 4 in colonic epithelial cells. Lab Invest. 85:1139–1162. DOI:
10.1038/labinvest.3700316. PMID:
16007110.
37. Ye M, Joosse ME, Liu L, et al. 2020; Deletion of IL-6 exacerbates colitis and induces systemic inflammation in IL-10-deficient mice. J Crohns Colitis. 14:831–840. DOI:
10.1093/ecco-jcc/jjz176. PMID:
31679013. PMCID:
PMC7346894.
38. Kuhn KA, Schulz HM, Regner EH, et al. 2018; Bacteroidales recruit IL-6-producing intraepithelial lymphocytes in the colon to promote barrier integrity. Mucosal Immunol. 11:357–368. DOI:
10.1038/mi.2017.55. PMID:
28812548. PMCID:
PMC5815964.
39. Ishii K, Shirai T, Kakuta Y, et al. 2022; Development of severe colitis in Takayasu arteritis treated with tocilizumab. Clin Rheumatol. 41:1911–1918. DOI:
10.1007/s10067-022-06108-z. PMID:
35188603.
40. Borghini R, Vescovo M, Giordano C, Donato G, Picarelli A. 2021; Onset of suspected ulcerative colitis after treatment with tocilizumab in patient with celiac disease and juvenile idiopathic arthritis. Inflamm Bowel Dis. 27:e76–e78. DOI:
10.1093/ibd/izab036. PMID:
33616165.
41. Dragoni G, Innocenti T, Galli A. 2021; Biomarkers of inflammation in inflammatory bowel disease: how long before abandoning single-marker approaches? Dig Dis. 39:190–203. DOI:
10.1159/000511641. PMID:
32942275.
42. Nikolaus S, Waetzig GH, Butzin S, et al. 2018; Evaluation of interleukin-6 and its soluble receptor components sIL-6R and sgp130 as markers of inflammation in inflammatory bowel diseases. Int J Colorectal Dis. 33:927–936. DOI:
10.1007/s00384-018-3069-8. PMID:
29748708. PMCID:
PMC6002455.
43. Carlini V, Noonan DM, Abdalalem E, et al. 2023; The multifaceted nature of IL-10: regulation, role in immunological homeostasis and its relevance to cancer, COVID-19 and post-COVID conditions. Front Immunol. 14:1161067. DOI:
10.3389/fimmu.2023.1161067. PMID:
37359549. PMCID:
PMC10287165.
45. Jofra T, Galvani G, Cosorich I, et al. 2019; Experimental colitis in IL-10-deficient mice ameliorates in the absence of PTPN22. Clin Exp Immunol. 197:263–275. DOI:
10.1111/cei.13339. PMID:
31194881. PMCID:
PMC6693971.
46. Kennedy RJ, Hoper M, Deodhar K, Erwin PJ, Kirk SJ, Gardiner KR. 2000; Interleukin 10-deficient colitis: new similarities to human inflammatory bowel disease. Br J Surg. 87:1346–1351. DOI:
10.1046/j.1365-2168.2000.01615.x. PMID:
11044159.
47. Sharifinejad N, Zaki-Dizaji M, Sepahvandi R, et al. 2022; The clinical, molecular, and therapeutic features of patients with IL10/IL10R deficiency: a systematic review. Clin Exp Immunol. 208:281–291. DOI:
10.1093/cei/uxac040. PMID:
35481870. PMCID:
PMC9226142.
48. Aghamohamadi E, Asri N, Odak A, et al. 2022; Gene expression analysis of intestinal IL-8, IL-17 A and IL-10 in patients with celiac and inflammatory bowel diseases. Mol Biol Rep. 49:6085–6091. DOI:
10.1007/s11033-022-07397-y. PMID:
35526253.
50. Buruiana FE, Solà I, Alonso-Coello P. 2010; Recombinant human interleukin 10 for induction of remission in Crohn's disease. Cochrane Database Syst Rev. 2010:CD005109. DOI:
10.1002/14651858.CD005109.pub3. PMID:
21069683. PMCID:
PMC8864725.
51. Trinchieri G. 2003; Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol. 3:133–146. DOI:
10.1038/nri1001. PMID:
12563297.
52. Mannon PJ, Fuss IJ, Mayer L, et al. 2004; Anti-interleukin-12 antibody for active Crohn's disease. N Engl J Med. 351:2069–2079. DOI:
10.1056/NEJMoa033402. PMID:
15537905.
53. Nielsen OH, Kirman I, Rüdiger N, Hendel J, Vainer B. 2003; Upregulation of interleukin-12 and -17 in active inflammatory bowel disease. Scand J Gastroenterol. 38:180–185. DOI:
10.1080/00365520310000672. PMID:
12678335.
54. Monteleone G, Biancone L, Marasco R, et al. 1997; Interleukin 12 is expressed and actively released by Crohn's disease intestinal lamina propria mononuclear cells. Gastroenterology. 112:1169–1178. DOI:
10.1016/S0016-5085(97)70128-8. PMID:
9098000.
55. Parrello T, Monteleone G, Cucchiara S, et al. 2000; Up-regulation of the IL-12 receptor beta 2 chain in Crohn's disease. J Immunol. 165:7234–7239. DOI:
10.4049/jimmunol.165.12.7234. PMID:
11120856.
56. Neurath MF, Fuss I, Kelsall BL, Stüber E, Strober W. 1995; Antibodies to interleukin 12 abrogate established experimental colitis in mice. J Exp Med. 182:1281–1290. DOI:
10.1084/jem.182.5.1281. PMID:
7595199. PMCID:
PMC2192205.
57. Kullberg MC, Jankovic D, Feng CG, et al. 2006; IL-23 plays a key role in Helicobacter hepaticus-induced T cell-dependent colitis. J Exp Med. 203:2485–2494. DOI:
10.1084/jem.20061082. PMID:
17030948. PMCID:
PMC2118119.
58. Murphy CA, Langrish CL, Chen Y, et al. 2003; Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J Exp Med. 198:1951–1957. DOI:
10.1084/jem.20030896. PMID:
14662908. PMCID:
PMC2194162.
59. Cua DJ, Sherlock J, Chen Y, et al. 2003; Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature. 421:744–748. DOI:
10.1038/nature01355. PMID:
12610626.
60. Zundler S, Neurath MF. 2015; Interleukin-12: functional activities and implications for disease. Cytokine Growth Factor Rev. 26:559–568. DOI:
10.1016/j.cytogfr.2015.07.003. PMID:
26182974.
62. Leonard JP, Sherman ML, Fisher GL, et al. 1997; Effects of single-dose interleukin-12 exposure on interleukin-12-associated toxicity and interferon-gamma production. Blood. 90:2541–2548.
63. Iwakura Y, Ishigame H, Saijo S, Nakae S. 2011; Functional specialization of interleukin-17 family members. Immunity. 34:149–162. DOI:
10.1016/j.immuni.2011.02.012. PMID:
21349428.
66. Lee CR, Park SG. 2013; Interleukin-17 in the inflammatory bowel disease. Hanyang Med Rev. 33:27–32. DOI:
10.7599/hmr.2013.33.1.27.
68. Ye P, Rodriguez FH, Kanaly S, et al. 2001; Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. J Exp Med. 194:519–527. DOI:
10.1084/jem.194.4.519. PMID:
11514607. PMCID:
PMC2193502.
69. Liang SC, Tan XY, Luxenberg DP, et al. 2006; Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med. 203:2271–2279. DOI:
10.1084/jem.20061308. PMID:
16982811. PMCID:
PMC2118116.
70. Fujino S, Andoh A, Bamba S, et al. 2003; Increased expression of interleukin 17 in inflammatory bowel disease. Gut. 52:65–70. DOI:
10.1136/gut.52.1.65. PMID:
12477762. PMCID:
PMC1773503.
71. Menesy A, Hammad M, Aref S, Abozeid FAM. 2024; Level of interleukin 17 in inflammatory bowel disease and its relation with disease activity. BMC Gastroenterol. 24:135. DOI:
10.1186/s12876-024-03218-7. PMID:
38622545. PMCID:
PMC11020998.
72. Sahin A, Calhan T, Cengiz M, et al. 2014; Serum interleukin 17 levels in patients with Crohn's disease: real life data. Dis Markers. 2014:690853. DOI:
10.1155/2014/690853. PMID:
25140070. PMCID:
PMC4124784.
73. Lucaciu LA, Ilieș M, Vesa ȘC, et al. 2021; Serum interleukin (IL)-23 and IL-17 profile in inflammatory bowel disease (IBD) patients could differentiate between severe and non-severe disease. J Pers Med. 11:1130. DOI:
10.3390/jpm11111130. PMID:
34834482. PMCID:
PMC8621192.
75. Perusina Lanfranca M, Lin Y, Fang J, Zou W, Frankel T. 2016; Biological and pathological activities of interleukin-22. J Mol Med (Berl). 94:523–534. DOI:
10.1007/s00109-016-1391-6. PMID:
26923718. PMCID:
PMC4860114.
76. Kim K, Kim G, Kim JY, Yun HJ, Lim SC, Choi HS. 2014; Interleukin-22 promotes epithelial cell transformation and breast tumorigenesis via MAP3K8 activation. Carcinogenesis. 35:1352–1361. DOI:
10.1093/carcin/bgu044. PMID:
24517997.
78. Radaeva S, Sun R, Pan HN, Hong F, Gao B. 2004; Interleukin 22 (IL-22) plays a protective role in T cell-mediated murine hepatitis: IL-22 is a survival factor for hepatocytes via STAT3 activation. Hepatology. 39:1332–1342. DOI:
10.1002/hep.20184. PMID:
15122762.
79. Zenewicz LA, Yancopoulos GD, Valenzuela DM, Murphy AJ, Stevens S, Flavell RA. 2008; Innate and adaptive interleukin-22 protects mice from inflammatory bowel disease. Immunity. 29:947–957. DOI:
10.1016/j.immuni.2008.11.003. PMID:
19100701. PMCID:
PMC3269819.
80. Sugimoto K, Ogawa A, Mizoguchi E, et al. 2008; IL-22 ameliorates intestinal inflammation in a mouse model of ulcerative colitis. J Clin Invest. 118:534–544. DOI:
10.1172/JCI33194. PMID:
18172556. PMCID:
PMC2157567.
81. Huber S, Gagliani N, Zenewicz LA, et al. 2012; IL-22BP is regulated by the inflammasome and modulates tumorigenesis in the intestine. Nature. 491:259–263. DOI:
10.1038/nature11535. PMID:
23075849. PMCID:
PMC3493690.
82. Łukasik Z, Gracey E, Venken K, Ritchlin C, Elewaut D. 2021; Crossing the boundaries: IL-23 and its role in linking inflammation of the skin, gut and joints. Rheumatology (Oxford). 60(Suppl 4):iv16–iv27. DOI:
10.1093/rheumatology/keab385. PMID:
33961030. PMCID:
PMC8527243.
83. Oppmann B, Lesley R, Blom B, et al. 2000; Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity. 13:715–725. DOI:
10.1016/S1074-7613(00)00070-4. PMID:
11114383.
84. Xiong DK, Shi X, Han MM, et al. 2022; The regulatory mechanism and potential application of IL-23 in autoimmune diseases. Front Pharmacol. 13:982238. DOI:
10.3389/fphar.2022.982238. PMID:
36176425. PMCID:
PMC9514453.
86. Mangan PR, Harrington LE, O'Quinn DB, et al. 2006; Transforming growth factor-beta induces development of the T(H)17 lineage. Nature. 441:231–234. DOI:
10.1038/nature04754. PMID:
16648837.
88. Geremia A, Arancibia-Cárcamo CV, Fleming MP, et al. 2011; IL-23-responsive innate lymphoid cells are increased in inflammatory bowel disease. J Exp Med. 208:1127–1133. DOI:
10.1084/jem.20101712. PMID:
21576383. PMCID:
PMC3173242.
89. Takayama T, Kamada N, Chinen H, et al. 2010; Imbalance of NKp44(+)NKp46(-) and NKp44(-)NKp46(+) natural killer cells in the intestinal mucosa of patients with Crohn's disease. Gastroenterology. 139:882–892.e1-e3. DOI:
10.1053/j.gastro.2010.05.040. PMID:
20638936.
90. Pidasheva S, Trifari S, Phillips A, et al. 2011; Functional studies on the IBD susceptibility gene IL23R implicate reduced receptor function in the protective genetic variant R381Q. PLoS One. 6:e25038. DOI:
10.1371/journal.pone.0025038. PMID:
22022372. PMCID:
PMC3192060.
91. Duerr RH, Taylor KD, Brant SR, et al. 2006; A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science. 314:1461–1463. DOI:
10.1126/science.1135245. PMID:
17068223. PMCID:
PMC4410764.
92. Sivanesan D, Beauchamp C, Quinou C, et al. 2016; IL23R (interleukin 23 receptor) variants protective against inflammatory bowel diseases (IBD) display loss of function due to impaired protein stability and intracellular trafficking. J Biol Chem. 291:8673–8685. DOI:
10.1074/jbc.M116.715870. PMID:
26887945. PMCID:
PMC4861437.
93. Liu Z, Yadav PK, Xu X, et al. 2011; The increased expression of IL-23 in inflammatory bowel disease promotes intraepithelial and lamina propria lymphocyte inflammatory responses and cytotoxicity. J Leukoc Biol. 89:597–606. DOI:
10.1189/jlb.0810456. PMID:
21227898.
94. Mocci G, Tursi A, Onidi FM, Usai-Satta P, Pes GM, Dore MP. 2024; Ustekinumab in the treatment of inflammatory bowel diseases: evolving paradigms. J Clin Med. 13:1519. DOI:
10.3390/jcm13051519. PMID:
38592377. PMCID:
PMC10933994.
95. Hanauer SB, Sandborn WJ, Feagan BG, et al. 2020; IM-UNITI: three-year efficacy, safety, and immunogenicity of ustekinumab treatment of Crohn's disease. J Crohns Colitis. 14:23–32. DOI:
10.1093/ecco-jcc/jjz110. PMID:
31158271.
96. Zhou H, Wang F, Wan J, et al. 2023; Systematic review and meta-analysis of observational studies on the effectiveness and safety of ustekinumab among patients with inflammatory bowel disease in eastern and western countries. J Clin Med. 12:1894. DOI:
10.3390/jcm12051894. PMID:
36902681. PMCID:
PMC10004158.
97. Yiu TH, Ko Y, Pudipeddi A, Natale P, Leong RW. 2024; Meta-analysis: persistence of advanced therapies in the treatment of inflammatory bowel disease. Aliment Pharmacol Ther. 59:1312–1334. DOI:
10.1111/apt.18006. PMID:
38651771.
98. Johnson AM, Barsky M, Ahmed W, et al. 2023; The real-world effectiveness and safety of ustekinumab in the treatment of Crohn's disease: results from the SUCCESS consortium. Am J Gastroenterol. 118:317–328. DOI:
10.14309/ajg.0000000000002047. PMID:
36191274.
99. Brewer GMG, Salem G, Afzal MA, et al. 2021; Ustekinumab is effective for perianal fistulising Crohn's disease: a real-world experience and systematic review with meta-analysis. BMJ Open Gastroenterol. 8:e000702. DOI:
10.1136/bmjgast-2021-000702. PMID:
34920992. PMCID:
PMC8685938.
100. Mañosa M, Fernández-Clotet A, Nos P, et al. 2023; Ustekinumab and vedolizumab for the prevention of postoperative recurrence of Crohn's disease: results from the ENEIDA registry. Dig Liver Dis. 55:46–52. DOI:
10.1016/j.dld.2022.07.013. PMID:
35948459.
101. Macaluso FS, Grova M, Mocciaro F, et al. 2023; Ustekinumab is a promising option for the treatment of postoperative recurrence of Crohn's disease. J Gastroenterol Hepatol. 38:1503–1509. DOI:
10.1111/jgh.16208. PMID:
37148148.
102. Guillo L, D'Amico F, Danese S, Peyrin-Biroulet L. 2021; Ustekinumab for extra-intestinal manifestations of inflammatory bowel disease: a systematic literature review. J Crohns Colitis. 15:1236–1243. DOI:
10.1093/ecco-jcc/jjaa260. PMID:
33367674.
103. Gordon H, Burisch J, Ellul P, et al. 2024; ECCO guidelines on extraintestinal manifestations in inflammatory bowel disease. J Crohns Colitis. 18:1–37. DOI:
10.1093/ecco-jcc/jjad108. PMID:
37351850.
104. Chateau T, Angioi K, Peyrin-Biroulet L. 2020; Two cases of successful ustekinumab treatment for non-infectious uveitis associated with Crohn's disease. J Crohns Colitis. 14:571. DOI:
10.1093/ecco-jcc/jjz167. PMID:
31606743.
105. Biemans VBC, van der Meulen-de Jong AE, van der Woude CJ, et al. 2020; Ustekinumab for Crohn's disease: results of the ICC registry, a nationwide prospective observational cohort study. J Crohns Colitis. 14:33–45. DOI:
10.1093/ecco-jcc/jjz119. PMID:
31219157. PMCID:
PMC7142409.
106. Strand V, Balsa A, Al-Saleh J, et al. 2017; Immunogenicity of biologics in chronic inflammatory diseases: a systematic review. BioDrugs. 31:299–316. DOI:
10.1007/s40259-017-0231-8. PMID:
28612180. PMCID:
PMC5548814.
107. Bots SJ, Parker CE, Brandse JF, et al. 2021; Anti-drug antibody formation against biologic agents in inflammatory bowel disease: a systematic review and meta-analysis. BioDrugs. 35:715–733. DOI:
10.1007/s40259-021-00507-5. PMID:
34797516. PMCID:
PMC9826743.
108. Ghosh S, Feagan BG, Ott E, et al. 2024; Safety of ustekinumab in inflammatory bowel disease: pooled safety analysis through 5 years in Crohn's disease and 4 years in ulcerative colitis. J Crohns Colitis. 18:1091–1101. DOI:
10.1093/ecco-jcc/jjae013. PMID:
38310565. PMCID:
PMC11302965.
109. Cho SI, Kang S, Kim YE, Lee JY, Jo SJ. 2020; Ustekinumab does not increase tuberculosis risk: results from a national database in South Korea. J Am Acad Dermatol. 82:1243–1245. DOI:
10.1016/j.jaad.2019.12.033. PMID:
31866266.
110. Choi MG, Ye BD, Yang SK, Shim TS, Jo KW, Park SH. 2022; The risk of tuberculosis in patients with inflammatory bowel disease treated with vedolizumab or ustekinumab in Korea. J Korean Med Sci. 37:e107. DOI:
10.3346/jkms.2022.37.e107. PMID:
35411727. PMCID:
PMC9001185.
111. Shin SH, Park SH. 2022; Viral hepatitis in patients with inflammatory bowel disease. Korean J Gastroenterol. 80:51–59. DOI:
10.4166/kjg.2022.096. PMID:
36004631.
112. Ting SW, Chen YC, Huang YH. 2018; Risk of hepatitis B reactivation in patients with psoriasis on ustekinumab. Clin Drug Investig. 38:873–880. DOI:
10.1007/s40261-018-0671-z. PMID:
29968197.
113. Akiyama S, Steinberg JM, Kobayashi M, Suzuki H, Tsuchiya K. 2023; Pregnancy and medications for inflammatory bowel disease: an updated narrative review. World J Clin Cases. 11:1730–1740. DOI:
10.12998/wjcc.v11.i8.1730. PMID:
36969991. PMCID:
PMC10037280.
114. Mitrova K, Pipek B, Bortlik M, et al. 2022; Safety of ustekinumab and vedolizumab during pregnancy-pregnancy, neonatal, and infant outcome: a prospective multicentre study. J Crohns Colitis. 16:1808–1815. DOI:
10.1093/ecco-jcc/jjac086. PMID:
35708729.
115. Avni-Biron I, Mishael T, Zittan E, et al. 2022; Ustekinumab during pregnancy in patients with inflammatory bowel disease: a prospective multicentre cohort study. Aliment Pharmacol Ther. 56:1361–1369. DOI:
10.1111/apt.17224. PMID:
36168705.
116. Abraham BP, Ott E, Busse C, et al. 2022; Ustekinumab exposure in pregnant women from inflammatory bowel disease clinical trials: pregnancy outcomes through up to 5 years in Crohn's disease and 2 years in ulcerative colitis. Crohns Colitis 360. 4:otac025. DOI:
10.1093/crocol/otac025. PMID:
36777422. PMCID:
PMC9802371.
117. Mahadevan U, Naureckas S, Tikhonov I, et al. 2022; Pregnancy outcomes following periconceptional or gestational exposure to ustekinumab: review of cases reported to the manufacturer's global safety database. Aliment Pharmacol Ther. 56:477–490. DOI:
10.1111/apt.16960. PMID:
35560249.
118. Chugh R, Long MD, Jiang Y, et al. 2024; Maternal and neonatal outcomes in vedolizumab- and ustekinumab-exposed pregnancies: results from the PIANO registry. Am J Gastroenterol. 119:468–476. DOI:
10.14309/ajg.0000000000002553. PMID:
37796648.
119. Julsgaard M, Wieringa JW, Baunwall SMD, et al. Infant ustekinumab clearance, risk of infection, and development after exposure during pregnancy. Clin Gastroenterol Hepatol. 2024; Jan. 24. doi: 10.1016/j.cgh.2024.01.008. DOI:
10.1016/j.cgh.2024.01.008.
120. Sewell GW, Kaser A. 2022; Interleukin-23 in the pathogenesis of inflammatory bowel disease and implications for therapeutic intervention. J Crohns Colitis. 16(Supplement_2):ii3–ii19. DOI:
10.1093/ecco-jcc/jjac034. PMID:
35553667. PMCID:
PMC9097674.
121. Feagan BG, Sandborn WJ, D'Haens G, et al. 2017; Induction therapy with the selective interleukin-23 inhibitor risankizumab in patients with moderate-to-severe Crohn's disease: a randomised, double-blind, placebo-controlled phase 2 study. Lancet. 389:1699–1709. DOI:
10.1016/S0140-6736(17)30570-6. PMID:
28411872.
122. Feagan BG, Panés J, Ferrante M, et al. 2018; Risankizumab in patients with moderate to severe Crohn's disease: an open-label extension study. Lancet Gastroenterol Hepatol. 3:671–680. DOI:
10.1016/S2468-1253(18)30233-4. PMID:
30056030.
123. D'Haens G, Panaccione R, Baert F, et al. Risankizumab as induction therapy for Crohn's disease: results from the phase 3 ADVANCE and MOTIVATE induction trials. Lancet. 2022; 399:2015–2030. DOI:
10.1016/S0140-6736(22)00467-6. PMID:
35644154.
124. Ferrante M, Panaccione R, Baert F, et al. 2022; Risankizumab as maintenance therapy for moderately to severely active Crohn's disease: results from the multicentre, randomised, double-blind, placebo-controlled, withdrawal phase 3 FORTIFY maintenance trial. Lancet. 399:2031–2046. DOI:
10.1016/S0140-6736(22)00466-4. PMID:
35644155.
125. Risankizumab induction therapy in patients with moderately to severely active ulcerative colitis: efficacy and safety in the randomized phase 3 INSPIRE study. Gastroenterol Hepatol (N Y). 2023; 19(12 Suppl 9):9–10.
126. Louis E, Panaccione R, Parkes G, et al. 2024; Risankizumab maintenance therapy in patients with moderately to severely active ulcerative colitis: efficacy and safety in the randomised phase 3 COMMAND study. J Crohns Colitis. 18(Supplement_1):i10–i12. DOI:
10.1093/ecco-jcc/jjad212.0006.
127. Sands BE, Peyrin-Biroulet L, Kierkus J, et al. 2022; Efficacy and safety of mirikizumab in a randomized phase 2 study of patients with Crohn's disease. Gastroenterology. 162:495–508. DOI:
10.1053/j.gastro.2021.10.050. PMID:
34748774.
128. Sandborn WJ, Ferrante M, Bhandari BR, et al. 2020; Efficacy and safety of mirikizumab in a randomized phase 2 study of patients with ulcerative colitis. Gastroenterology. 158:537–549.e10. DOI:
10.1053/j.gastro.2019.08.043. PMID:
31493397.
129. D'Haens G, Dubinsky M, Kobayashi T, et al. 2023; Mirikizumab as induction and maintenance therapy for ulcerative colitis. N Engl J Med. 388:2444–2455. DOI:
10.1056/NEJMoa2207940. PMID:
37379135.
130. Sands BE, D'Haens G, Clemow DB, et al. Two-year efficacy and safety of mirikizumab following 104 weeks of continuous treatment for ulcerative colitis: results from the LUCENT-3 open-label extension study. Inflamm Bowel Dis. 2024; Mar. 9. doi: 10.1093/ibd/izae024. DOI:
10.1093/ibd/izae024. PMID:
38459910.
132. Sandborn WJ, D'Haens GR, Reinisch W, et al. 2022; Guselkumab for the treatment of Crohn's disease: induction results from the phase 2 GALAXI-1 study. Gastroenterology. 162:1650–1664. e8. DOI:
10.1053/j.gastro.2022.01.047. PMID:
35134323.
133. Danese S, Panaccione R, Feagan BG, et al. 2024; Efficacy and safety of 48 weeks of guselkumab for patients with Crohn's disease: maintenance results from the phase 2, randomised, double-blind GALAXI-1 trial. Lancet Gastroenterol Hepatol. 9:133–146. DOI:
10.1016/S2468-1253(23)00318-7. PMID:
38104569.
134. Panaccione R, Danese S, Feagan BG, et al. 2024; Efficacy and safety of guselkumab therapy in patients with moderately to severely active Crohn's disease: results of the GALAXI 2 G 3 phase 3 studies. Gastroenterology. 166:1057b. DOI:
10.1016/S0016-5085(24)05019-4.
135. Peyrin-Biroulet L, Allegretti JR, Rubin DT, et al. 2023; Guselkumab in patients with moderately to severely active ulcerative colitis: QUASAR phase 2b induction study. Gastroenterology. 165:1443–1457. DOI:
10.1053/j.gastro.2023.08.038. PMID:
37659673.
136. The efficacy and safety of guselkumab induction therapy in patients with moderately to severely active ulcerative colitis: results from the phase 3 QUASAR induction study. Gastroenterol Hepatol (N Y). 2023; 19(7 Suppl 3):9–10.
137. Rubin DT, Allegretti JR, Panés J, et al. 2024; The efficacy and safety of guselkumab as maintenance therapy in patients with moderately to severely active ulcerative colitis: results from the phase 3 QUASAR maintenance study. Gastroenterology. 166:S–180. DOI:
10.1016/S0016-5085(24)00910-7.
138. Köck K, Pan WJ, Gow JM, et al. 2015; Preclinical development of AMG 139, a human antibody specifically targeting IL-23. Br J Pharmacol. 172:159–172. DOI:
10.1111/bph.12904. PMID:
25205227. PMCID:
PMC4280975.
139. Sands BE, Chen J, Feagan BG, et al. 2017; Efficacy and safety of MEDI2070, an antibody against interleukin 23, in patients with moderate to severe Crohn's disease: a phase 2a study. Gastroenterology. 153:77–86.e6. DOI:
10.1053/j.gastro.2017.03.049. PMID:
28390867.
140. Danese S, Beaton A, Duncan EA, et al. 2023; Long-term safety of brazikumab in the open-label period of a randomized phase 2a study of patients with Crohn's disease. BMC Gastroenterol. 23:451. DOI:
10.1186/s12876-023-03078-7. PMID:
38124112. PMCID:
PMC10731694.
141. Sands BE, Irving PM, Hoops T, et al. 2022; Ustekinumab versus adalimumab for induction and maintenance therapy in biologic-naive patients with moderately to severely active Crohn's disease: a multicentre, randomised, double-blind, parallel-group, phase 3b trial. Lancet. 399:2200–2211. DOI:
10.1016/S0140-6736(22)00688-2. PMID:
35691323.
142. Peyrin-Biroulet L, Bossuyt P, Regueiro M, et al. 2024; Risankizumab Versus ustekinumab for the achievement of endoscopic outcomes in patients with moderate-to-severe Crohn's disease: results from the phase 3b SEQUENCE trial. J Crohns Colitis. 18(Supplement_1):i90–i91. DOI:
10.1093/ecco-jcc/jjad212.0050.
143. Dubinsky MC, D'Haens G, Atreya R, et al. 2024; Risankizumab versus ustekinumab for the achievement of clinical outcomes and symptom improvement in patients with moderate to severe Crohn's disease: results from the phase 3b SEQUENCE trial. J Crohns Colitis. 18(Supplement_1):i65–i66. DOI:
10.1093/ecco-jcc/jjad212.0036.
144. Dignass A, Redondo I, Richards M, Hartz S, Zaremba-Pechmann L, Hoque S. 2024; P105 Mirikizumab versus ustekinumab in moderately to severely active ulcerative colitis: maintenance number needed to treat from a network meta-analysis. Gut. 73:A113. DOI:
10.1136/gutjnl-2024-BSG.187.
145. Singh S, Murad MH, Fumery M, et al. 2021; Comparative efficacy and safety of biologic therapies for moderate-to-severe Crohn's disease: a systematic review and network meta-analysis. Lancet Gastroenterol Hepatol. 6:1002–1014. DOI:
10.1016/S2468-1253(21)00312-5. PMID:
34688373.
146. Barberio B, Gracie DJ, Black CJ, Ford AC. 2023; Efficacy of biological therapies and small molecules in induction and maintenance of remission in luminal Crohn's disease: systematic review and network meta-analysis. Gut. 72:264–274. DOI:
10.1136/gutjnl-2022-328052. PMID:
35907636.
147. Chu X, Biao Y, Liu C, et al. 2023; Network meta-analysis on efficacy and safety of different biologics for ulcerative colitis. BMC Gastroenterol. 23:346. DOI:
10.1186/s12876-023-02938-6. PMID:
37803294. PMCID:
PMC10557260.
148. Burr NE, Gracie DJ, Black CJ, Ford AC. 2022; Efficacy of biological therapies and small molecules in moderate to severe ulcerative colitis: systematic review and network meta-analysis. Gut. 71:1976–1987. DOI:
10.1136/gutjnl-2021-326390. PMID:
34937767.
149. Click B, Regueiro M. 2019; A practical guide to the safety and monitoring of new IBD therapies. Inflamm Bowel Dis. 25:831–842. DOI:
10.1093/ibd/izy313. PMID:
30312391. PMCID:
PMC6458527.
150. Juillerat P, Grueber MM, Ruetsch R, Santi G, Vuillèmoz M, Michetti P. 2022; Positioning biologics in the treatment of IBD: a practical guide - which mechanism of action for whom? Curr Res Pharmacol Drug Discov. 3:100104. DOI:
10.1016/j.crphar.2022.100104. PMID:
35570855. PMCID:
PMC9092374.