1. McCulloch WS, Pitts W. A logical calculus of the ideas immanent in nervous activity. Bull Math Biol. 1943; 5:115–33.
Article
2. Rosenblatt F. The perceptron: a probabilistic model for information storage and organization (1958). In : Lewis HR, editor. Ideas that created the future: classic papers of computer science. The MIT Press;2021. p. 183.
3. Minsky M, Papert S. (1969) Marvin Minsky and Seymour Papert, Perceptrons, Cambridge, MA: MIT Press, Introduction, pp. 1-20, and p. 73 (figure 5.1). In : Anderson JA, Rosenfeld E, editors. Neurocomputing, volume 1: foundations of research. The MIT Press;1988. p. 675.
4. Rumelhart DE, Hinton GE, Williams RJ. Learning internal representations by error propagation. In : Rumelhart DE, McClelland JL, editors. Parallel distributed processing, volume 1: explorations in the microstructure of cognition: foundations. The MIT Press;1986. p. 676–9.
5. Hatamizadeh A, Tang Y, Nath V, Yang D, Myronenko A, Landman B, et al. UNETR: transformers for 3D medical image segmentation. Proceedings of the 2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022 Jan 3-8; Waikoloa (HI), USA. New York City (NY): IEEE; 2022.
Article
6. LeCun Y, Kavukcuoglu K, Farabet C. Convolutional networks and applications in vision. Proceedings of the 2010 IEEE International Symposium on Circuits and Systems; 2010 May 30-Jun 2; Paris, France. New York City (NY): IEEE; 2010.
Article
7. Hatamizadeh A, Nath V, Tang Y, Yang D, Roth HR, Xu D. Swin UNETR: Swin transformers for semantic segmentation of brain tumors in MRI images. Proceedings of the 7th International MICCAI Brainlesion Workshop, BrainLes 2021; 2021 Sep 27; Virtual Event. Cham: Springer; 2022.
8. Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation. Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2015; 2015 Oct 5-9; Munich, Germany. Cham: Springer; 2015.
Article
9. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, et al. Attention is all you need. Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017); 2017 Dec 4-9; Long Beach (CA), USA. Red Hook (NY): Curran Associates, Inc.; 2017.
10. Liu Z, Lin Y, Cao Y, Hu H, Wei Y, Zhang Z, et al. Swin transformer: hierarchical vision transformer using shifted windows. Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV); 2021 Oct 10-17; Montreal (QC), Canada. New York City (NY): IEEE; 2022.
Article
11. Etherton MR, Rost NS, Wu O. Infarct topography and functional outcomes. J Cereb Blood Flow Metab. 2018; 38:1517–32.
Article
12. Bates E, Wilson SM, Saygin AP, Dick F, Sereno MI, Knight RT, et al. Voxel-based lesion-symptom mapping. Nat Neurosci. 2003; 6:448–50.
Article
13. Lo R, Gitelman D, Levy R, Hulvershorn J, Parrish T. Identification of critical areas for motor function recovery in chronic stroke subjects using voxel-based lesion symptom mapping. Neuroimage. 2010; 49:9–18.
Article
14. Goldenberg G, Spatt J. Influence of size and site of cerebral lesions on spontaneous recovery of aphasia and on success of language therapy. Brain Lang. 1994; 47:684–98.
Article
15. Munsch F, Sagnier S, Asselineau J, Bigourdan A, Guttmann CR, Debruxelles S, et al. Stroke location is an independent predictor of cognitive outcome. Stroke. 2016; 47:66–73.
Article
17. Hernandez Petzsche MR, de la Rosa E, Hanning U, Wiest R, Valenzuela W, Reyes M, et al. ISLES 2022: a multi-center magnetic resonance imaging stroke lesion segmentation dataset. Sci Data. 2022; 9:762.
Article
19. MONAI [Internet]. MONAI Consortium [cited 2023 Dec 7]. Available from:
https://monai.io.
25. Wang P, Chung ACS. Focal dice loss and image dilation for brain tumor segmentation. Proceedings of the 4th International Workshop on Deep Learning in Medical Image Analysis, DLMIA 2018, and the 8th International Workshop on Multimodal Learning for Clinical Decision Support, ML-CDS 2018; 2018 Sep 20; Granada, Spain. Cham: Springer; 2018.
Article
27. Mangla R, Kolar B, Almast J, Ekholm SE. Border zone infarcts: pathophysiologic and imaging characteristics. Radiographics. 2011; 31:1201–14.
Article
28. Fisher CM. Lacunes: small, deep cerebral infarcts. Neurology. 1998; 50:841–841-a.
Article
29. Ho Y, Wookey S. The real-world-weight cross-entropy loss function: modeling the costs of mislabeling. IEEE Access. 2019; 8:4806–13.
Article
31. Subudhi A, Sahoo S, Biswal P, Sabut S. Segmentation and classification of ischemic stroke using optimized features in brain MRI. Biomed Eng Appl Basis Commun. 2018; 30:1850011.
Article
32. Cetinoglu YK, Koska IO, Uluc ME, Gelal MF. Detection and vascular territorial classification of stroke on diffusion-weighted MRI by deep learning. Eur J Radiol. 2021; 145:110050.
Article
33. Myronenko A. 3D MRI brain tumor segmentation using autoencoder regularization. Proceedings of the 4th International MICCAI Brainlesion Workshop, BrainLes 2018; 2018 Sep 16; Granada, Spain. Cham: Springer; 2019.
Article
34. Isensee F, Jaeger PF, Kohl SAA, Petersen J, Maier-Hein KH. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat Methods. 2021; 18:203–11.
Article
35. Wang W, Chen C, Ding M, Yu H, Zha S, Li J. TransBTS: multimodal brain tumor segmentation using transformer. Proceedings of the 24th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2021; 2021 Sep 27-Oct 1; Strasbourg, France. Cham: Springer; 2021.
Article
37. Wardlaw JM, Mair G, von Kummer R, Williams MC, Li W, Storkey AJ, et al. Accuracy of automated computer-aided diagnosis for stroke imaging: a critical evaluation of current evidence. Stroke. 2022; 53:2393–403.
Article
38. Mokli Y, Pfaff J, Dos Santos DP, Herweh C, Nagel S. Computer-aided imaging analysis in acute ischemic stroke - background and clinical applications. Neurol Res Pract. 2019; 1:23.
Article