1. Abe D, Inaji M, Hase T, Takahashi S, Sakai R, Ayabe F, et al. A prehospital triage system to detect traumatic intracranial hemorrhage using machine learning algorithms. JAMA Netw Open. 5:e2216393. 2022.
Article
2. Abujaber A, Fadlalla A, Gammoh D, Abdelrahman H, Mollazehi M, ElMenyar A. Using trauma registry data to predict prolonged mechanical ventilation in patients with traumatic brain injury: machine learning approach. PLoS one. 15:e0235231. 2020.
Article
3. Al-Mufti F, Smith B, Lander M, Damodara N, Nuoman R, El-Ghanem M, et al. Novel minimally invasive multi-modality monitoring modalities in neurocritical care. J Neurol Sci. 390:184–192. 2018.
Article
4. Athaya T, Choi S : Evaluation of different machine learning models for photoplethysmogram signal artifact detection. 2020 International conference on information and communication technology convergence (ICTC); 2020 Oct 21-23; Jeju, Korea. New York : IEEE, c2020, pp1206-1208.
5. Au-Yeung WM, Sahani AK, Isselbacher EM, Armoundas AA. Reduction of false alarms in the intensive care unit using an optimized machine learning based approach. NPJ Digit Med. 2:86. 2019.
Article
6. Awaysheh A, Wilcke J, Elvinger F, Rees L, Fan W, Zimmerman KL. Review of medical decision support and machine-learning methods. Vet Pathol. 56:512–525. 2019.
7. Azabou E, Navarro V, Kubis N, Gavaret M, Heming N, Cariou A, et al. Value and mechanisms of EEG reactivity in the prognosis of patients with impaired consciousness: a systematic review. Crit Care. 22:184. 2018.
Article
8. Backhaus S : Traumatic Brain Injury (TBI) in Kreutzer JS, DeLuca J, Caplan B (eds) : Encyclopedia of Clinical Neuropsychology. New York : Springer New York, 2011, pp2550-2554.
9. Bakator M, Radosav D. Deep learning and medical diagnosis: a review of literature. Multimodal Technol Interact. 2:47. 2018.
Article
10. Beqiri E, Smielewski P, Robba C, Czosnyka M, Cabeleira MT, Tas J, et al. Feasibility of individualised severe traumatic brain injury management using an automated assessment of optimal cerebral perfusion pressure: the COGiTATE phase II study protocol. BMJ Open. 9:e030727. 2019.
Article
11. Bhavsar KA, Singla J, Al-Otaibi YD, Song OY, Zikria YB, Bashir AK. Medical diagnosis using machine learning: a statistical review. Comput Mater Contin. 67:107–125. 2021.
Article
12. Bonds BW, Yang S, Hu PF, Kalpakis K, Stansbury LG, Scalea TM, et al. Predicting secondary insults after severe traumatic brain injury. J Trauma Acute Care Surg. 79:85–90. 2015.
Article
13. Briganti G : A clinician’s guide to large language models. Future Medicine AI 1 : FMAI1, 2023.
14. Brossard C, Lemasson B, Attyé A, De Busschère JA, Payen JF, Barbier EL, et al. Contribution of CT-scan analysis by artificial intelligence to the clinical care of TBI patients. Front Neurol. 12:666875. 2021.
Article
15. Burgess S, Abu-Laban RB, Slavik RS, Vu EN, Zed PJ. A systematic review of randomized controlled trials comparing hypertonic sodium solutions and mannitol for traumatic brain injury: implications for emergency department management. Ann Pharmacother. 50:291–300. 2016.
Article
16. Carra G, Güiza F, Depreitere B, Meyfroidt G; CENTER-TBI High-Resolution ICU (HR ICU) Sub-Study Participants. Prediction model for intracranial hypertension demonstrates robust performance during external validation on the CENTER-TBI dataset. Intensive Care Med. 47:124–126. 2021.
Article
17. Chen JW, Gombart ZJ, Rogers S, Gardiner SK, Cecil S, Bullock RM. Pupillary reactivity as an early indicator of increased intracranial pressure: the introduction of the Neurological Pupil index. Surg Neurol Int. 2:82. 2011.
Article
18. Chesnut RM, Temkin N, Carney N, Dikmen S, Rondina C, Videtta W, et al. A trial of intracranial-pressure monitoring in traumatic brain injury. N Engl J Med. 367:2471–2481. 2012.
Article
19. Choi Y, Park JH, Hong KJ, Ro YS, Song KJ, Shin SD. Development and validation of a prehospital-stage prediction tool for traumatic brain injury: a multicentre retrospective cohort study in Korea. BMJ Open. 12:e055918. 2022.
Article
20. Corral-Acero J, Margara F, Marciniak M, Rodero C, Loncaric F, Feng Y, et al. The ‘Digital Twin’ to enable the vision of precision cardiology. Eur Heart J. 41:4556–4564. 2020.
Article
21. Croatti A, Gabellini M, Montagna S, Ricci A. On the integration of agents and digital twins in healthcare. J Med Syst. 44:161. 2020.
Article
22. Cui W, Ge S, Shi Y, Wu X, Luo J, Lui H, et al. Death after discharge: prognostic model of 1-year mortality in traumatic brain injury patients undergoing decompressive craniectomy. Chin Neurosurg J. 7:24. 2021.
Article
23. Cvach M. Monitor alarm fatigue: an integrative review. Biomed Instrum Technol. 46:268–277. 2012.
24. DeJournett L, DeJournett J. In silico testing of an artificial-intelligencebased artificial pancreas designed for use in the intensive care unit setting. J Diabetes Sci Technol. 10:1360–1371. 2016.
Article
25. Drew BJ, Harris P, Zègre-Hemsey JK, Mammone T, Schindler D, Salas-Boni R, et al. Insights into the problem of alarm fatigue with physiologic monitor devices: a comprehensive observational study of consecutive intensive care unit patients. PloS One. 9:e110274. 2014.
Article
26. Dundar TT, Yurtsever I, Pehlivanoglu MK, Yildiz U, Eker A, Demir MA, et al. Machine learning-based surgical planning for neurosurgery: artificial intelligent approaches to the cranium. Front Surg. 9:863633. 2022.
Article
27. Eddy DM, Schlessinger L. Validation of the Archimedes diabetes model. Diabetes Care. 26:3102–3110. 2003.
Article
28. Ellethy H, Chandra SS, Nasrallah FA. The detection of mild traumatic brain injury in paediatrics using artificial neural networks. Comput Biol Med. 135:104614. 2021.
Article
29. Emami H, Dong M, Nejad-Davarani SP, Glide-Hurst CK. Generating synthetic CTs from magnetic resonance images using generative adversarial networks. Med Phys. 45:3627–3636. 2018.
Article
30. Erol T, Mendi AF, Doğan D : The digital twin revolution in healthcare. 2020 4th international symposium on multidisciplinary studies and innovative technologies (ISMSIT); 2020 Oct 22-24; Istanbul, Turkey. New York : IEEE, c2020, pp1-7.
31. Evensen KB, Eide PK. Measuring intracranial pressure by invasive, less invasive or non-invasive means: limitations and avenues for improvement. Fluids Barriers CNS. 17:34. 2020.
Article
32. Farzaneh N, Williamson CA, Gryak J, Najarian K. A hierarchical expertguided machine learning framework for clinical decision support systems: an application to traumatic brain injury prognostication. NPJ Digit Med. 4:78. 2021.
Article
33. Garg A, Mago V. Role of machine learning in medical research: a survey. Compu Sci Rev. 40:100370. 2021.
Article
34. Ghajar J. Traumatic brain injury. Lancet. 356:923–929. 2000.
35. Glaser J, Vasquez M, Cardarelli C, Galvagno S Jr, Stein D, Murthi S, et al. Through the looking glass: early non-invasive imaging in TBI predicts the need for interventions. Trauma Surg Acute Care Open. 1:e000019. 2016.
Article
36. Gong EJ, Bang CS. Interpretation of medical images using artificial intelligence: current status and future perspectives. Korean J Gastroenterol. 82:43–45. 2023.
Article
38. Güiza F, Depreitere B, Piper I, Van den Berghe G, Meyfroidt G. Novel methods to predict increased intracranial pressure during intensive care and long-term neurologic outcome after traumatic brain injury: development and validation in a multicenter dataset. Crit Care Med. 41:554–564. 2013.
Article
39. Güler İ, Gökçil Z, Gülbandilar E. Evaluating of traumatic brain injuries using artificial neural networks. Expert Syst Appl. 36:10424–10427. 2009.
Article
40. Habibzadeh A, Khademolhosseini S, Kouhpayeh A, Niakan A, Asadi MA, Ghasemi H, et al. Machine learning-based models to predict the need for neurosurgical intervention after moderate traumatic brain injury. Health Sci Rep. 6:e1666. 2023.
Article
41. Hale AT, Stonko DP, Lim J, Guillamondegui OD, Shannon CN, Patel MB. Using an artificial neural network to predict traumatic brain injury. J Neurosurg Pediatr. 23:219–226. 2018.
Article
42. Hanko M, Grendár M, Snopko P, Opšenák R, Šutovský J, Benčo M, et al. Random forest-based prediction of outcome and mortality in patients with traumatic brain injury undergoing primary decompressive craniectomy. World Neurosurg. 148:e450–e458. 2021.
Article
43. Haveman ME, Van Putten MJAM, Hom HW, Eertman-Meyer CJ, Beishuizen A, Tjepkema-Cloostermans MC. Predicting outcome in patients with moderate to severe traumatic brain injury using electroencephalography. Crit Care. 23:401. 2019.
Article
44. Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts HJWL. Artificial intelligence in radiology. Nat Rev Cancer. 18:500–510. 2018.
Article
45. Hsu YC, Weng HH, Kuo CY, Chu TP, Tsai YH. Prediction of fall events during admission using eXtreme gradient boosting: a comparative validation study. Sci Rep. 10:16777. 2020.
Article
46. Huanxia W : A method for patient gait real-time monitoring based on powered exoskeleton and digital twin. Fifth International Conference on Computer Information Science and Artificial Intelligence (CISAI 2022); 2022 Sep 16-18; Chongqing, China. Bellingham : SPIE, c2023, Vol 12566, pp734-743.
47. Hunter OF, Perry F, Salehi M, Bandurski H, Hubbard A, Ball CG, et al. Science fiction or clinical reality: a review of the applications of artificial intelligence along the continuum of trauma care. World J Emerg Surg. 18:16. 2023.
Article
48. Imaduddin SM, Fanelli A, Vonberg FW, Tasker RC, Heldt T. PseudoBayesian model-based noninvasive intracranial pressure estimation and tracking. IEEE Trans Biomed Eng. 67:1604–1615. 2020.
Article
49. Jahns FP, Miroz JP, Messerer M, Daniel RT, Taccone FS, Eckert P, et al. Quantitative pupillometry for the monitoring of intracranial hypertension in patients with severe traumatic brain injury. Crit Care. 23:155. 2019.
Article
50. Jain S, Vyvere TV, Terzopoulos V, Sima DM, Roura E, Maas A, et al. Automatic quantification of computed tomography features in acute traumatic brain injury. J Neurotrauma. 36:1794–1803. 2019.
Article
51. Jaishankar R, Fanelli A, Filippidis A, Vu T, Holsapple J, Heldt T. A spectral approach to model-based noninvasive intracranial pressure estimation. IEEE J Biomed Health Inform. 24:2398–2406. 2020.
Article
52. Jung MK, Ahn D, Park CM, Ha EJ, Roh TH, You NK, et al. Prediction of serious intracranial hypertension from low-resolution neuromonitoring in traumatic brain injury: an explainable machine learning approach. IEEE J Biomed Health Inform. 27:1903–1913. 2023.
Article
53. Kashif FM, Verghese GC, Novak V, Czosnyka M, Heldt T. Model-based noninvasive estimation of intracranial pressure from cerebral blood flow velocity and arterial pressure. Sci Transl Med. 4:129ra144. 2012.
Article
54. Keshavamurthy KN, Leary OP, Merck LH, Kimia B, Collins S, Wright DW, et al. : Machine learning algorithm for automatic detection of CT-identifiable hyperdense lesions associated with traumatic brain injury. Medical Imaging 2017: Computer-Aided Diagnosis; 2017 Feb 11-16; Olando, FL. Bellingham : SPIE, c2017, Vol 10134, pp630-638.
55. Kim H, Lee SB, Son Y, Czosnyka M, Kim DJ. Hemodynamic instability and cardiovascular events after traumatic brain injury predict outcome after artifact removal with deep belief network analysis. J Neurosurg Anesthesiol. 30:347–353. 2018.
Article
56. Kim YJ. The impact of time to surgery on outcomes in patients with traumatic brain injury: a literature review. Int Emerg Nurs. 22:214–219. 2014.
Article
57. Kinoshita K. Traumatic brain injury: pathophysiology for neurocritical care. J Intensive Care. 4:29. 2016.
Article
58. Kovacs M, Peluso L, Njimi H, De Witte O, Gouvêa Bogossian E, Quispe Cornejo A, et al. Optimal cerebral perfusion pressure guided by brain oxygen pressure measurement. Front Neurol. 12:732830. 2021.
Article
59. Kristiansson H, Nissborg E, Bartek J Jr, Andresen M, Reinstrup P, Romner B. Measuring elevated intracranial pressure through noninvasive methods: a review of the literature. J Neurosurg Anesthesiol. 25:372–385. 2013.
60. Lal A, Li G, Cubro E, Chalmers S, Li H, Herasevich V, et al. Development and verification of a digital twin patient model to predict specific treatment response during the first 24 hours of sepsis. Crit Care Explor. 2:e0249. 2020.
Article
61. Lameski P, Zdravevski E, Koceski S, Kulakov A, Trajkovik V. Suppression of intensive care unit false alarms based on the arterial blood pressure signal. IEEE Access. 5:5829–5836. 2017.
Article
62. Laubenbacher R, Sluka JP, Glazier JA. Using digital twins in viral infection. Science. 371:1105–1106. 2021.
Article
63. Lee HJ, Kim H, Kim YT, Won K, Czosnyka M, Kim DJ. Prediction of lifethreatening intracranial hypertension during the acute phase of traumatic brain injury using machine learning. IEEE J Biomed Health Inform. 25:3967–3976. 2021.
Article
64. Lee SB, Kim H, Kim YT, Zeiler FA, Smielewski P, Czosnyka M, et al. Artifact removal from neurophysiological signals: impact on intracranial and arterial pressure monitoring in traumatic brain injury. J Neurosurg. 132:1952–1960. 2019.
Article
65. Li H, Ma H, Yang B, Xu C, Cao L, Dong X, et al. Automatic evaluation of mannitol dehydration treatments on controlling intracranial pressure using electrical impedance tomography. IEEE Sens J. 20:4832–4839. 2020.
Article
66. Li Q, Clifford GD. Signal quality and data fusion for false alarm reduction in the intensive care unit. J Electrocardiol. 45:596–603. 2012.
Article
68. Lin MY, Li CC, Lin PH, Wang JL, Chan MC, Wu CL, et al. Explainable machine learning to predict successful weaning among patients requiring prolonged mechanical ventilation: a retrospective cohort study in Central Taiwan. Front Med (Lausanne). 8:663739. 2021.
Article
69. Lyashevska O, Malone F, MacCarthy E, Fiehler J, Buhk JH, Morris L. Class imbalance in gradient boosting classification algorithms: application to experimental stroke data. Stat Methods Med Res. 30:916–925. 2021.
Article
70. Maas MB, Naidech AM, Batra A, Chou SH, Bleck TP. Comment on “Can quantitative pupillometry be used to screen for elevated intracranial pressure? A retrospective cohort study”. Neurocrit Care. 37:597–598. 2022.
Article
71. Magoulas GD, Prentza A. Machine learning in medical applications. In : Paliouras G, Karkaletsis V, Spyropoulos CD, editors. Machine Learning and Its Applications. Berlin: Springer;2021. p. 300–307.
72. Majdan M, Brazinova A, Rusnak M, Leitgeb J. Outcome prediction after traumatic brain injury: comparison of the performance of routinely used severity scores and multivariable prognostic models. J Neurosci Rural Pract. 8:20–29. 2017.
Article
73. Majdan M, Mauritz W, Brazinova A, Rusnak M, Leitgeb J, Janciak I, et al. Severity and outcome of traumatic brain injuries (TBI) with different causes of injury. Brain Inj. 25:797–805. 2011.
Article
74. Makarenko S, Griesdale DE, Gooderham P, Sekhon MS. Multimodal neuromonitoring for traumatic brain injury: a shift towards individualized therapy. J Clin Neurosci. 26:8–13. 2016.
Article
75. Mariak Z, Swiercz M, Krejza J, Lewko J, Lyson T. Intracranial pressure processing with artificial neural networks: classification of signal properties. Acta Neurochir (Wien). 142:407–411. discussion 411-412. 2000.
Article
76. Marshall GT, James RF, Landman MP, O’Neill PJ, Cotton BA, Hansen EN, et al. Pentobarbital coma for refractory intra-cranial hypertension after severe traumatic brain injury: mortality predictions and one-year outcomes in 55 patients. J Trauma. 69:275–283. 2010.
Article
77. Matsushima K, Inaba K, Siboni S, Skiada D, Strumwasser AM, Magee GA, et al. Emergent operation for isolated severe traumatic brain injury: does time matter? J Trauma Acute Care Surg. 79:838–842. 2015.
78. McIntyre LA, Fergusson DA, Hébert PC, Moher D, Hutchison JS. Prolonged therapeutic hypothermia after traumatic brain injury in adults: a systematic review. JAMA. 289:2992–2999. 2003.
Article
79. McIver KG. The Application of High-Performance Computing to Create and Analyze Simulations of Human Injury. West Lafayette: Purdue University Graduate School;2022.
80. Melinosky C, Yang S, Hu P, Li H, Miller CHT, Khan I, et al. Continuous vital sign analysis to predict secondary neurological decline after traumatic brain injury. Front Neurol. 9:761. 2018.
Article
81. Meyfroidt G, Bouzat P, Casaer MP, Chesnut R, Hamada SR, Helbok R, et al. Management of moderate to severe traumatic brain injury: an update for the intensivist. Intensive Care Med. 48:649–666. 2022.
Article
82. Mikola A, Rätsep I, Särkelä M, Lipping T : Prediction of outcome in traumatic brain injury patients using long-term qEEG features. 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); 2015 Aug 25-29; Milan, Italy. New York : IEEE, c2015, pp1532-1535.
83. Miyagawa T, Sasaki M, Yamaura A. Intracranial pressure based decision making: prediction of suspected increased intracranial pressure with machine learning. PLoS One. 15:e0240845. 2020.
84. Moor M, Banerjee O, Abad ZSH, Krumholz HM, Leskovec J, Topol EJ, et al. Foundation models for generalist medical artificial intelligence. Nature. 616:259–265. 2023.
Article
85. Moyer JD, Lee P, Bernard C, Henry L, Lang E, Cook F, et al. Machine learning-based prediction of emergency neurosurgery within 24 h after moderate to severe traumatic brain injury. World J Emerg Surg. 17:42. 2022.
86. Naharro-Abellán A, Lobo-Val-buena B, Gordo F. Clinical decision support systems: future or present in ICU. ICU Manag Pract. 19:202–205. 2019.
87. Noh SH, Cho PG, Kim KN, Kim SH, Shin DA. Artificial intelligence for neurosurgery : current state and future directions. J Korean Neurosurg Soc. 66:113–120. 2023.
Article
88. Noor NSEM, Ibrahim H, Lah MHC, Abdullah JM. Improving outcome prediction for traumatic brain injury from imbalanced datasets using RUSBoosted trees on electroencephalography spectral power. IEEE Access. 9:121608–121631. 2021.
89. Noraky J, Verghese GC, Searls DE, Lioutas VA, Sonni S, Thomas A, et al. Noninvasive intracranial pressure determination in patients with subarachnoid hemorrhage. Acta Neurochir Suppl. 122:65–68. 2016.
Article
90. Osheroff JA, Teich J, Levick D, Saldana L, Velasco F, Sittig D, et al. Improving outcomes with clinical decision support: an implementer’s guide. Chicago: Himss Publishing;2012.
91. Pansell J, Hack R, Rudberg P, Bell M, Cooray C. Can quantitative pupillometry be used to screen for elevated intracranial pressure? A retrospective cohort study. Neurocrit Care. 37:531–537. 2022.
Article
92. Pesapane F, Codari M, Sardanelli F. Artificial intelligence in medical imaging: threat or opportunity? Radiologists again at the forefront of innovation in medicine. Eur Radiol Exp. 2:35. 2018.
Article
93. Pimentel MA, Brennan T, Lehman LW, King NK, Ang BT, Feng M. Outcome prediction for patients with traumatic brain injury with dynamic features from intracranial pressure and arterial blood pressure signals: a Gaussian process approach. Acta Neurochir Suppl. 122:85–91. 2016.
94. Popovic D, Khoo M, Lee S. Noninvasive monitoring of intracranial pressure. Recent Pat Biomed Eng. 2:165–179. 2009.
Article
95. Powers WJ. Intracerebral hemorrhage and head trauma: common effects and common mechanisms of injury. Stroke. 41(10 Suppl):S107–S110. 2010.
96. Raj R, Luostarinen T, Pursiainen E, Posti JP, Takala RSK, Bendel S, et al. Machine learning-based dynamic mortality prediction after traumatic brain injury. Sci Rep. 9:17672. 2019.
Article
97. Rajaei F, Cheng S, Williamson CA, Wittrup E, Najarian K. AI-based decision support system for traumatic brain injury: a survey. Diagnostics (Basel). 13:1640. 2023.
Article
98. Rajpurkar P, Lungren MP. The current and future state of AI interpretation of medical images. N Engl J Med. 388:1981–1990. 2023.
99. Robba C, Asgari S, Gupta A, Badenes R, Sekhon M, Bequiri E, et al. Lung injury is a predictor of cerebral hypoxia and mortality in traumatic brain injury. Front Neurol. 11:771. 2020.
Article
100. Robba C, Bacigaluppi S, Cardim D, Donnelly J, Bertuccio A, Czosnyka M. Non-invasive assessment of intracranial pressure. Acta Neurol Scand. 134:4–21. 2016.
Article
101. Robba C, Pozzebon S, Moro B, Vincent JL, Creteur J, Taccone FS. Multimodal non-invasive assessment of intracranial hypertension: an observational study. Crit Care. 24:379. 2020.
Article
102. Rohaut B, Eliseyev A, Claassen J. Uncovering consciousness in unresponsive ICU patients: technical, medical and ethical considerations. Crit Care. 23:78. 2019.
Article
103. Rosenberg JB, Shiloh AL, Savel RH, Eisen LA. Non-invasive methods of estimating intracranial pressure. Neurocrit Care. 15:599–608. 2011.
Article
104. Ryu JA, Jung W, Jung YJ, Kwon DY, Kang K, Choi H, et al. Early prediction of neurological outcome after barbiturate coma therapy in patients undergoing brain tumor surgery. PLoS One. 14:e0215280. 2019.
105. Sadrawi M, Lin YT, Lin CH, Mathunjwa B, Hsin HT, Fan SZ, et al. Non-invasive hemodynamics monitoring system based on electrocardiography via deep convolutional autoencoder. Sensors (Basel). 21:6264. 2021.
Article
106. Sainbhi AS, Gomez A, Froese L, Slack T, Batson C, Stein KY, et al. Noninvasive and minimally-invasive cerebral autoregulation assessment: a narrative review of techniques and implications for clinical research. Front Neurol. 13:872731. 2022.
Article
107. Scalzo F, Hamilton R, Asgari S, Kim S, Hu X. Intracranial hypertension prediction using extremely randomized decision trees. Med Eng Phys. 34:1058–1065. 2012.
Article
108. Schweingruber N, Mader MMD, Wiehe A, Röder F, Göttsche J, Kluge S, et al. A recurrent machine learning model predicts intracranial hypertension in neurointensive care patients. Brain. 145:2910–2919. 2022.
Article
109. Seelig JM, Becker DP, Miller JD, Greenberg RP, Ward JD, Choi SC. Traumatic acute subdural hematoma: major mortality reduction in comatose patients treated within four hours. N Engl J Med. 304:1511–1518. 1981.
110. Shah RV, Grennan G, Zafar-Khan M, Alim F, Dey S, Ramanathan D, et al. Personalized machine learning of depressed mood using wearables. Transl Psychiatry. 11:338. 2021.
Article
111. Sidey-Gibbons JAM, Sidey-Gibbons CJ. Machine learning in medicine: a practical introduction. BMC Med Res Methodol. 19:64. 2019.
112. Smith M. Multimodality neuromonitoring in adult traumatic brain injury: a narrative review. Anesthesiology. 128:401–415. 2018.
113. Son Y, Lee SB, Kim H, Song ES, Huh H, Czosnyka M, et al. Automated artifact elimination of physiological signals using a deep belief network: an application for continuously measured arterial blood pressure waveforms. Inf Sci. 456:145–158. 2018.
Article
114. Staartjes VE, Stumpo V, Kernbach JM, Klukowska AM, Gadjradj PS, Schröder ML, et al. Machine learning in neurosurgery: a global survey. Acta Neurochir (Wien). 162:3081–3091. 2020.
Article
115. Stangler LA, Kouzani A, Bennet KE, Dumee L, Berk M, Worrell GA, et al. Microdialysis and microperfusion electrodes in neurologic disease monitoring. Fluids Barriers CNS. 18:52. 2021.
Article
116. Stein SC, Georgoff P, Meghan S, Mirza KL, El Falaky OM. Relationship of aggressive monitoring and treatment to improved outcomes in severe traumatic brain injury. J Neurosurg. 112:1105–1112. 2010.
Article
117. Stevens AR, Su Z, Toman E, Belli A, Davies D. Optical pupillometry in traumatic brain injury: neurological pupil index and its relationship with intracranial pressure through significant event analysis. Brain Inj. 33:1032–1038. 2019.
Article
118. Steyerberg EW, Mushkudiani N, Perel P, Butcher I, Lu J, McHugh GS, et al. Predicting outcome after traumatic brain injury: development and international validation of prognostic scores based on admission characteristics. PLoS Med. 5:e165. discussion e165. 2008.
119. Stocker RA. Intensive care in traumatic brain injury including multimodal monitoring and neuroprotection. Med Sci (Basel). 7:37. 2019.
Article
120. Surendrakumar S, Rabelo TK, Campos ACP, Mollica A, Abrahao A, Lipsman N, et al. Neuromodulation therapies in pre-clinical models of traumatic brain injury: systematic review and translational applications. J Neurotrauma. 40:435–448. 2023.
Article
121. Svedung Wettervik TM, Lewén A, Enblad P. Fine tuning of traumatic brain injury management in neurointensive care-indicative observations and future perspectives. Front Neurol. 12:638132. 2021.
Article
122. Tao F, Qi Q. Make more digital twins. Nature. 573:490–491. 2019.
Article
123. Thabtah F, Abdelhamid N, Peebles D. A machine learning autism classification based on logistic regression analysis. Health Inf Sci Syst. 7:12. 2019.
Article
124. Tierney KJ, Nayak NV, Prestigiacomo CJ, Sifri ZC. Neurosurgical intervention in patients with mild traumatic brain injury and its effect on neurological outcomes. J Neurosurg. 124:538–545. 2016.
Article
125. Tisdall MM, Smith M. Multimodal monitoring in traumatic brain injury: current status and future directions. Br J Anaesth. 99:61–67. 2007.
Article
126. Tsien CL, Fackler JC. Poor prognosis for existing monitors in the intensive care unit. Crit Care Med. 25:614–619. 1997.
127. Tsien CL, Kohane IS, McIntosh N. Multiple signal integration by decision tree induction to detect artifacts in the neonatal intensive care unit. Artif Intell Med. 19:189–202. 2000.
Article
128. Tu KC, Eric Nyam TT, Wang CC, Chen NC, Chen KT, Chen CJ, et al. A computer-assisted system for early mortality risk prediction in patients with traumatic brain injury using artificial intelligence algorithms in emergency room triage. Brain Sci. 12:612. 2022.
Article
129. Tunthanathip T, Oearsakul T. Application of machine learning to predict the outcome of pediatric traumatic brain injury. Chin J Traumatol. 24:350–355. 2021.
Article
130. van de Sande D, van Genderen ME, Huiskens J, Gommers D, van Bommel J. Moving from bytes to bedside: a systematic review on the use of artificial intelligence in the intensive care unit. Intensive Care Med. 47:750–760. 2021.
Article
131. Vilela GH, Cabella B, Mascarenhas S, Czosnyka M, Smielewski P, Dias C, et al. Validation of a new minimally invasive intracranial pressure monitoring method by direct comparison with an invasive technique. Acta Neurochir Suppl. 122:97–100. 2016.
Article
132. Wang X, Gao Y, Lin J, Rangwala H, Mittu R : A machine learning approach to false alarm detection for critical arrhythmia alarms. 2015 IEEE 14th international conference on machine learning and applications (ICMLA); 2015 Dec 9-11; Miami, FL. New York : IEEE, 2015, pp202-207.
133. Wang Y, Huang C, Tian R, Yang X. Target temperature management and therapeutic hypothermia in sever neuroprotection for traumatic brain injury: clinic value and effect on oxidative stress. Medicine (Baltimore). 102:e32921. 2023.
134. Wang Z, Wang H, Becker R, Rufo J, Yang S, Mace BE, et al. Acoustofluidic separation enables early diagnosis of traumatic brain injury based on circulating exosomes. Microsyst Nanoeng. 7:20. 2021.
Article
135. Whalen S, Schreiber J, Noble WS, Pollard KS. Navigating the pitfalls of applying machine learning in genomics. Nat Rev Genet. 23:169–181. 2022.
Article
136. Ye G, Balasubramanian V, Li JK, Kaya M. Machine learning-based continuous intracranial pressure prediction for traumatic injury patients. IEEE J Transl Eng Health Med. 10:4901008. 2022.
Article
137. Yokobori S, Hosein K, Burks S, Sharma I, Gajavelli S, Bullock R. Biomarkers for the clinical differential diagnosis in traumatic brain injury--a systematic review. CNS Neurosci Ther. 19:556–565. 2013.
Article
138. Young AMH, Guilfoyle MR, Donnelly J, Smielewski P, Agarwal S, Czosnyka M, et al. Multimodality neuromonitoring in severe pediatric traumatic brain injury. Pediatr Res. 83:41–49. 2018.
Article
139. Yu R, Wang S, Xu J, Wang Q, He X, Li J, et al. Machine learning approaches-driven for mortality prediction for patients undergoing craniotomy in ICU. Brain Inj. 35:1658–1664. 2021.
Article
140. Zeiler FA, Iturria-Medina Y, Thelin EP, Gomez A, Shankar JJ, Ko JH, et al. Integrative neuroinformatics for precision prognostication and personalized therapeutics in moderate and severe traumatic brain injury. Front Neurol. 12:729184. 2021.
141. Zhang X, Medow JE, Iskandar BJ, Wang F, Shokoueinejad M, Koueik J, et al. Invasive and noninvasive means of measuring intracranial pressure: a review. Physiol Meas. 38:R143–R182. 2017.
Article
142. Zhang X, Yan C, Gao C, Malin BA, Chen Y. Predicting missing values in medical data via XGBoost regression. J Healthc Inform Res. 4:383–394. 2020.
Article