1. Saeedi P, Petersohn I, Salpea P, et al. 2019; Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract. 157:107843. DOI:
10.1016/j.diabres.2019.107843. PMID:
31518657.
2. Iannuzzi JP, King JA, Leong JH, et al. 2022; Global incidence of acute pancreatitis is increasing over time: a systematic review and meta-analysis. Gastroenterology. 162:122–134. DOI:
10.1053/j.gastro.2021.10.045. PMID:
34571026.
4. Redondo MJ, Balasubramanyam A. 2021; Toward an improved classification of type 2 diabetes: lessons from research into the heterogeneity of a complex disease. J Clin Endocrinol Metab. 106:e4822–e4833. DOI:
10.1210/clinem/dgab545. PMID:
34291809. PMCID:
PMC8787852.
5. Sodhi M, Rezaeianzadeh R, Kezouh A, Etminan M. 2023; Risk of gastrointestinal adverse events associated with glucagon-like peptide-1 receptor agonists for weight loss. JAMA. 330:1795–1797. DOI:
10.1001/jama.2023.19574. PMID:
37796527. PMCID:
PMC10557026.
7. Abdulreda MH, Caicedo A, Berggren PO. 2013; A natural body window to study human pancreatic islet cell function and survival. CellR4 Repair Replace Regen Reprogram. 1:111–122. PMID:
29497630. PMCID:
PMC5828509.
9. Furman BL. 2021; Streptozotocin-induced diabetic models in mice and rats. Curr Protoc. 1:e78. DOI:
10.1002/cpz1.78. PMID:
33905609.
10. Yang H, Wright JR Jr. 2002; Human beta cells are exceedingly resistant to streptozotocin
in vivo. Endocrinology. 143:2491–2495. DOI:
10.1210/endo.143.7.8901. PMID:
12072379.
11. Németh BC, Wartmann T, Halangk W, Sahin-Tóth M. 2013; Autoactivation of mouse trypsinogens is regulated by chymotrypsin C via cleavage of the autolysis loop. J Biol Chem. 288:24049–24062. DOI:
10.1074/jbc.m113.478800. PMID:
23814066. PMCID:
PMC3745349.
12. Calà G, Sina B, De Coppi P, Giobbe GG, Gerli MFM. 2023; Primary human organoids models: current progress and key milestones. Front Bioeng Biotechnol. 11:1058970. DOI:
10.3389/fbioe.2023.1058970. PMID:
36959902. PMCID:
PMC10029057.
13. Fasolino M, Schwartz GW, Patil AR, et al. 2022; Single-cell multi-omics analysis of human pancreatic islets reveals novel cellular states in type 1 diabetes. Nat Metab. 4:284–299. DOI:
10.1530/ey.19.10.15. PMID:
35228745. PMCID:
PMC8938904.
14. Millman JR, Xie C, Van Dervort A, Gürtler M, Pagliuca FW, Melton DA. 2016; Generation of stem cell-derived β-cells from patients with type 1 diabetes. Nat Commun. 7:11463. DOI:
10.1038/ncomms11463. PMID:
27163171. PMCID:
PMC4866045.
16. Huang L, Holtzinger A, Jagan I, et al. 2015; Ductal pancreatic cancer modeling and drug screening using human pluripotent stem cell- and patient-derived tumor organoids. Nat Med. 21:1364–1371. DOI:
10.3410/f.725876995.793513150. PMID:
26501191. PMCID:
PMC4753163.
17. Seino T, Kawasaki S, Shimokawa M, et al. 2018; Human pancreatic tumor organoids reveal loss of stem cell niche factor dependence during disease progression. Cell Stem Cell. 22:454–467.e6. DOI:
10.1016/j.stem.2017.12.009. PMID:
29337182.
18. Loomans CJM, Williams Giuliani N, Balak J, et al. 2018; Expansion of adult human pancreatic tissue yields organoids harboring progenitor cells with endocrine differentia-tion potential. Stem Cell Reports. 10:712–724. DOI:
10.1016/j.stemcr.2018.02.005. PMID:
29539434. PMCID:
PMC5918840.
19. Bonfanti P, Nobecourt E, Oshima M, et al. 2015;
Ex vivo expansion and differentiation of human and mouse fetal pancreatic progenitors are modulated by epidermal growth factor. Stem Cells Dev. 24:1766–1778. DOI:
10.1089/scd.2014.0550. PMID:
25925840.
21. Puri S, Folias AE, Hebrok M. 2015; Plasticity and dedifferentiation within the pancreas: development, homeostasis, and disease. Cell Stem Cell. 16:18–31. DOI:
10.1016/j.stem.2014.11.001. PMID:
25465113. PMCID:
PMC4289422.
23. Brissova M, Fowler MJ, Nicholson WE, et al. 2005; Assessment of human pancreatic islet architecture and composition by laser scanning confocal microscopy. J Histochem Cytochem. 53:1087–1097. DOI:
10.1369/jhc.5c6684.2005. PMID:
15923354.
25. Domínguez-Muñoz JE. 2007; Pancreatic enzyme therapy for pancreatic exocrine insufficiency. Curr Gastroenterol Rep. 9:116–122. DOI:
10.1007/s11894-007-0005-4. PMID:
17418056.
27. Siegel RL, Miller KD, Wagle NS, Jemal A. 2023; Cancer statistics, 2023. CA Cancer J Clin. 73:17–48. DOI:
10.3322/caac.21763. PMID:
36633525.
28. Pantaleo A, Forte G, Fasano C, et al. 2023; Understanding the genetic landscape of pancreatic ductal adenocarcinoma to support personalized medicine: a systematic review. Can-cers (Basel). 16:56. DOI:
10.3390/cancers16010056. PMID:
38201484. PMCID:
PMC10778202.
29. Ying H, Dey P, Yao W, et al. 2016; Genetics and biology of pancreatic ductal adenocarcinoma. Genes Dev. 30:355–385. DOI:
10.1101/gad.275776.115. PMID:
16702400.
31. Weiss FU, Laemmerhirt F, Lerch MM. 2019; Etiology and risk factors of acute and chronic pancreatitis. Visc Med. 35:73–81. DOI:
10.1159/000499138. PMID:
31192240. PMCID:
PMC6514487.
32. Mitra V, Munnelly S, Grammatikopoulos T, et al. 2023; The top 10 research priorities for pancreatitis: findings from a James Lind Alliance priority setting partnership. Lancet Gastro-enterol Hepatol. 8:780–782. DOI:
10.1016/s2468-1253(23)00151-6. PMID:
37356452.
33. Bellin MD, Whitcomb DC, Abberbock J, et al. 2017; Patient and disease characteristics associated with the presence of diabetes mellitus in adults with chronic pancreatitis in the United States. Am J Gastroenterol. 112:1457–1465. DOI:
10.1038/ajg.2017.181. PMID:
28741615. PMCID:
PMC6168293.
34. Kleeff J, Whitcomb DC, Shimosegawa T, et al. 2017; Chronic pancreatitis. Nat Rev Dis Primers. 3:17060. DOI:
10.1038/nrdp.2017.61. PMID:
28880010.
37. Urakami T. 2019; Maturity-onset diabetes of the young (MODY): current perspectives on diagnosis and treatment. Diabetes Metab Syndr Obes. 12:1047–1056. DOI:
10.2147/dmso.s179793. PMID:
31360071. PMCID:
PMC6625604.
38. Tshivhase A, Matsha T, Raghubeer S. 2021; Diagnosis and treatment of MODY: an updated mini review. Appl Sci. 11:9436. DOI:
10.3390/app11209436.
39. Nkonge KM, Nkonge DK, Nkonge TN. 2020; The epidemiology, molecular pathogenesis, diagnosis, and treatment of matu-rity-onset diabetes of the young (MODY). Clin Diabetes Endocrinol. 6:20. DOI:
10.1186/s40842-020-00112-5. PMID:
33292863. PMCID:
PMC7640483.
41. Rubio-Cabezas O, Minton JA, Kantor I, Williams D, Ellard S, Hattersley AT. 2010; Homozygous mutations in NEUROD1 are responsible for a novel syndrome of permanent neonatal diabetes and neurological abnormalities. Diabetes. 59:2326–2331. DOI:
10.2337/db10-0011. PMID:
20573748. PMCID:
PMC2927956.
44. Hulín J, Škopková M, Valkovičová T, et al. 2020; Clinical implications of the glucokinase impaired function - GCK MODY today. Physiol Res. 69:995–1011. DOI:
10.33549/physiolres.934487. PMID:
33129248. PMCID:
PMC8549873.
45. Zhao Q, Ding L, Yang Y, et al. 2022; Clinical characteristics of patients with HNF1-alpha MODY: a literature review and retrospective chart review. Front Endocrinol (Lausanne). 13:900489. DOI:
10.3389/fendo.2022.900489. PMID:
35795147. PMCID:
PMC9252268.
46. Shepherd M, Ellis I, Ahmad AM, et al. 2001; Predictive genetic testing in maturity-onset diabetes of the young (MODY). Diabet Med. 18:417–421. DOI:
10.1046/j.1464-5491.2001.00447.x. PMID:
11472455.
47. Francis Y, Tiercelin C, Alexandre-Heyman L, Larger E, Dubois-Laforgue D. 2022; HNF1B-MODY masquerading as type 1 diabetes: a pitfall in the etiological diagnosis of diabetes. J Endocr Soc. 6:bvac087. DOI:
10.1210/jendso/bvac087. PMID:
35733830. PMCID:
PMC9206723.
48. Neve B, Fernandez-Zapico ME, Ashkenazi-Katalan V, et al. 2005; Role of transcription factor KLF11 and its diabetes-asso-ciated gene variants in pancreatic beta cell function. Proc Natl Acad Sci U S A. 102:4807–4812. DOI:
10.1073/pnas.0409177102. PMID:
15774581. PMCID:
PMC554843.
49. Johansson BB, Fjeld K, El Jellas K, et al. 2018; The role of the carboxyl ester lipase (CEL) gene in pancreatic disease. Pancreatology. 18:12–19.
51. Rebours V, Boutron-Ruault MC, Schnee M, et al. 2009; The natural history of hereditary pancreatitis: a national series. Gut. 58:97–103. DOI:
10.1136/gut.2008.149179. PMID:
18755888.
52. Rebours V, Boutron-Ruault MC, Schnee M, et al. 2008; Risk of pancreatic adenocarcinoma in patients with hereditary pancreatitis: a national exhaustive series. Am J Gastroenterol. 103:111–119. DOI:
10.1111/j.1572-0241.2007.01597.x. PMID:
18184119.
53. Piseddu I, Vielhauer J, Mayerle J. 2022; Genetic testing in acute and chronic pancreatitis. Curr Treat Options Gastro. 20:429–444. DOI:
10.1007/s11938-022-00383-0. PMID:
11276378.
54. Rinderknecht H. 1986; Activation of pancreatic zymogens. Nor-mal activation, premature intrapancreatic activation, protective mechanisms against inappropriate activation. Dig Dis Sci. 31:314–321. DOI:
10.1007/BF01318124. PMID:
2936587.
56. Girodon E, Rebours V, Chen JM, et al. 2021; Clinical interpretation of PRSS1 variants in patients with pancreatitis. Clin Res Hepatol Gastroenterol. 45:101497. DOI:
10.1016/j.clinre.2020.07.004. PMID:
33257277.
57. Németh BC, Sahin-Tóth M. 2014; Human cationic trypsinogen (PRSS1) variants and chronic pancreatitis. Am J Physiol Gastrointest Liver Physiol. 306:G466–G473. DOI:
10.1152/ajpgi.00419.2013. PMID:
24458023. PMCID:
PMC3949028.
58. Rowen L, Koop BF, Hood L. 1996; The complete 685-kilobase DNA sequence of the human beta T cell receptor locus. Science. 272:1755–1762. DOI:
10.1126/science.272.5269.1755. PMID:
8650574.
59. Whitcomb DC, Gorry MC, Preston RA, et al. 1996; Hereditary pancreatitis is caused by a mutation in the cationic trypsinogen gene. Nat Genet. 14:141–145. DOI:
10.1038/ng1096-141. PMID:
8841182.
60. Gorry MC, Gabbaizedeh D, Furey W, et al. 1997; Mutations in the cationic trypsinogen gene are associated with recurrent acute and chronic pancreatitis. Gastroenterology. 113:1063–1068. DOI:
10.1053/gast.1997.v113.pm9322498. PMID:
9322498.
62. Howes N, Lerch MM, Greenhalf W, et al. 2004; Clinical and genetic characteristics of hereditary pancreatitis in Europe. Clin Gastroenterol Hepatol. 2:252–261. DOI:
10.1016/s1542-3565(04)00013-8. PMID:
15017610.
63. Whitcomb DC, Preston RA, Aston CE, et al. 1996; A gene for hereditary pancreatitis maps to chromosome 7q35. Gastro-enterology. 110:1975–1980. DOI:
10.1053/gast.1996.v110.pm8964426. PMID:
8964426.
64. Solomon S, Gelrud A, Whitcomb DC. 2013; Low penetrance pancreatitis phenotype in a Venezuelan kindred with a PRSS1 R122H mutation. JOP. 14:187–189. DOI:
10.6092/1590-8577/1276. PMID:
23474566.
65. Szmola R, Sahin-Tóth M. 2007; Chymotrypsin C (caldecrin) promotes degradation of human cationic trypsin: identity with Rinderknecht’s enzyme Y. Proc Natl Acad Sci U S A. 104:11227–11232.
66. Wartmann T, Mayerle J, Kähne T, et al. 2010; Cathepsin L inactivates human trypsinogen, whereas cathepsin L-deletion reduces the severity of pancreatitis in mice. Gastroenterology. 138:726–737. DOI:
10.1053/j.gastro.2009.10.048. PMID:
19900452. PMCID:
PMC2941736.
67. Szabó A, Sahin-Tóth M. 2012; Determinants of chymotrypsin C cleavage specificity in the calcium-binding loop of human cationic trypsinogen. FEBS J. 279:4283–4292. DOI:
10.1111/febs.12018. PMID:
23035638. PMCID:
PMC3573857.
68. Szabó A A, Sahin-Tóth M. 2012; Increased activation of hereditary pancreatitis-associated human cationic trypsinogen mutants in presence of chymotrypsin C. J Biol Chem. 287:20701–20710. DOI:
10.1074/jbc.m112.360065. PMID:
22539344. PMCID:
PMC3370252.
69. Geisz A, Hegyi P, Sahin-Tóth M. 2013; Robust autoactivation, chymotrypsin C independence and diminished secretion define a subset of hereditary pancreatitis-associated cationic trypsinogen mutants. FEBS J. 280:2888–2899. DOI:
10.1111/febs.12292. PMID:
23601753. PMCID:
PMC3676443.
71. Chen JM, Kukor Z, Le Maréchal C, et al. 2003; Evolution of trypsinogen activation peptides. Mol Biol Evol. 20:1767–1777. DOI:
10.1093/molbev/msg183. PMID:
12832630.
72. Nemoda Z, Sahin-Tóth M. 2005; The tetra-aspartate motif in the activation peptide of human cationic trypsinogen is essential for autoactivation control but not for enteropeptidase recognition. J Biol Chem. 280:29645–29652. DOI:
10.1074/jbc.m505661200. PMID:
15970597. PMCID:
PMC1420407.
74. Lasson A, Borgström A, Ohlsson K. 1986; Elevated pancreatic secretory trypsin inhibitor levels during severe inflammatory disease, renal insufficiency, and after various surgical pro-cedures. Scand J Gastroenterol. 21:1275–1280. DOI:
10.3109/00365528608996455. PMID:
3810002.
76. Pfützer RH, Barmada MM, Brunskill AP, et al. 2000; SPINK1/PSTI polymorphisms act as disease modifiers in familial and idiopathic chronic pancreatitis. Gastroenterology. 119:615–623. DOI:
10.1053/gast.2000.18017. PMID:
10982753.
77. Aoun E, Muddana V, Papachristou GI, Whitcomb DC. 2010; SPINK1 N34S is strongly associated with recurrent acute pancreatitis but is not a risk factor for the first or sentinel acute pancreatitis event. Am J Gastroenterol. 105:446–451. DOI:
10.1038/ajg.2009.630. PMID:
19888199.
78. Kume K, Masamune A, Kikuta K, Shimosegawa T. 2006; [215G>A; IVS3+2T>C] mutation in the SPINK1 gene causes exon 3 skipping and loss of the trypsin binding site. Gut. 55:1214.
79. Király O, Wartmann T, Sahin-Tóth M. 2007; Missense mutations in pancreatic secretory trypsin inhibitor (SPINK1) cause intracellular retention and degradation. Gut. 56:1433–1438. DOI:
10.1136/gut.2006.115725. PMID:
17525091. PMCID:
PMC2000263.
80. Király O, Boulling A, Witt H, et al. 2007; Signal peptide variants that impair secretion of pancreatic secretory trypsin inhibitor (SPINK1) cause autosomal dominant hereditary pancreatitis. Hum Mutat. 28:469–476. DOI:
10.1002/humu.20471. PMID:
17274009. PMCID:
PMC2765331.
81. Kereszturi E, Király O, Sahin-Tóth M. 2009; Minigene analysis of intronic variants in common SPINK1 haplotypes associated with chronic pancreatitis. Gut. 58:545–549. DOI:
10.1136/gut.2008.164947. PMID:
18978175. PMCID:
PMC2677899.
82. Boulling A, Le Maréchal C, Trouvé P, Raguénès O, Chen JM, Férec C. 2007; Functional analysis of pancreatitis-associated missense mutations in the pancreatic secretory trypsin inhibitor (SPINK1) gene. Eur J Hum Genet. 15:936–942. DOI:
10.1038/sj.ejhg.5201873. PMID:
17568390.
83. Threadgold J, Greenhalf W, Ellis I, et al. 2002; The N34S mutation of SPINK1 (PSTI) is associated with a familial pattern of idiopathic chronic pancreatitis but does not cause the disease. Gut. 50:675–681. DOI:
10.1136/gut.50.5.675. PMID:
11950815. PMCID:
PMC1773194.
84. Aoun E, Chang CC, Greer JB, Papachristou GI, Barmada MM, Whitcomb DC. 2008; Pathways to injury in chronic pancreatitis: decoding the role of the high-risk SPINK1 N34S haplotype using meta-analysis. PLoS One. 3:e2003. DOI:
10.1371/journal.pone.0002003. PMID:
18414673. PMCID:
PMC2289874.
86. Rosendahl J, Witt H, Szmola R, et al. 2008; Chymotrypsin C (CTRC) variants that diminish activity or secretion are associated with chronic pancreatitis. Nat Genet. 40:78–82. DOI:
10.3410/f.1104782.560856. PMID:
18059268. PMCID:
PMC2650829.
87. Masson E, Chen JM, Scotet V, Le Maréchal C, Férec C. 2008; Association of rare chymotrypsinogen C (CTRC) gene variations in patients with idiopathic chronic pancreatitis. Hum Genet. 123:83–91. DOI:
10.1007/s00439-007-0459-3. PMID:
18172691.
88. Beer S, Zhou J, Szabó A, et al. 2013; Comprehensive functional analysis of chymotrypsin C (CTRC) variants reveals distinct loss-of-function mechanisms associated with pancreatitis risk. Gut. 62:1616–1624. DOI:
10.1136/gutjnl-2012-303090. PMID:
22942235. PMCID:
PMC3660471.
89. Witt H, Beer S, Rosendahl J, et al. 2013; Variants in CPA1 are strongly associated with early onset chronic pancreatitis. Nat Genet. 45:1216–1220. DOI:
10.1038/ng.2730. PMID:
23955596. PMCID:
PMC3909499.
90. Németh BC, Orekhova A, Zhang W, et al. 2020; Novel p.K374E variant of
CPA1 causes misfolding-induced hereditary pancreatitis with autosomal dominant inheritance. Gut. 69:790–792. DOI:
10.1136/gutjnl-2019-318751. PMID:
31005883. PMCID:
PMC8596457.
91. Schneider A, Larusch J, Sun X, et al. 2011; Combined bicarbonate conductance-impairing variants in CFTR and SPINK1 variants are associated with chronic pancreatitis in patients without cystic fibrosis. Gastroenterology. 140:162–171. DOI:
10.1053/j.gastro.2010.10.045. PMID:
20977904. PMCID:
PMC3171690.
93. McMaster P. 1979; Bile studies after liver transplantation. Ann R Coll Surg Engl. 61:435–440. PMID:
115368. PMCID:
PMC2492250.
94. Derichs N, Jin BJ, Song Y, Finkbeiner WE, Verkman AS. 2011; Hyperviscous airway periciliary and mucous liquid layers in cystic fibrosis measured by confocal fluorescence photobleaching. FASEB J. 25:2325–2332. DOI:
10.1096/fj.10-179549. PMID:
21427214. PMCID:
PMC3114535.
95. Chen JH, Stoltz DA, Karp PH, et al. 2010; Loss of anion transport without increased sodium absorption characterizes newborn porcine cystic fibrosis airway epithelia. Cell. 143:911–923. DOI:
10.3410/f.7064957.7627055. PMID:
21145458. PMCID:
PMC3057187.
96. Stallings VA, Stark LJ, Robinson KA, Feranchak AP, Quinton H. 2008; Evidence-based practice recommendations for nutrition-related management of children and adults with cystic fibrosis and pancreatic insufficiency: results of a systematic review. J Am Diet Assoc. 108:832–839. DOI:
10.1016/j.jada.2008.02.020. PMID:
18442507.
97. Hegyi P, Wilschanski M, Muallem S, et al. 2016; CFTR: a new horizon in the pathomechanism and treatment of pan-creatitis. Rev Physiol Biochem Pharmacol. 170:37–66. DOI:
10.1007/112_2015_5002. PMID:
26856995. PMCID:
PMC5232416.
98. Noone PG, Zhou Z, Silverman LM, Jowell PS, Knowles MR, Cohn JA. 2001; Cystic fibrosis gene mutations and pancreatitis risk: relation to epithelial ion transport and trypsin inhibitor gene mutations. Gastroenterology. 121:1310–1319. DOI:
10.1053/gast.2001.29673. PMID:
11729110.
100. Liang G, Zhang Y. 2013; Embryonic stem cell and induced pluripotent stem cell: an epigenetic perspective. Cell Res. 23:49–69. DOI:
10.1038/cr.2012.175. PMID:
23247625. PMCID:
PMC3541668.
102. Duque M, Amorim JP, Bessa J. 2022; Ptf1a function and transcriptional cis-regulation, a cornerstone in vertebrate pancreas development. FEBS J. 289:5121–5136. DOI:
10.1111/febs.16075. PMID:
34125483. PMCID:
PMC9545688.
103. Schaffer AE, Freude KK, Nelson SB, Sander M. 2010; Nkx6 transcription factors and Ptf1a function as antagonistic lineage determinants in multipotent pancreatic progenitors. Dev Cell. 18:1022–1029. DOI:
10.1016/j.devcel.2010.05.015. PMID:
20627083. PMCID:
PMC3133668.
104. Hogrebe NJ, Maxwell KG, Augsornworawat P, Millman JR. 2021; Generation of insulin-producing pancreatic β cells from multiple human stem cell lines. Nat Protoc. 16:4109–4143. DOI:
10.1038/s41596-021-00560-y. PMID:
34349281. PMCID:
PMC8529911.
106. Liang S, Zhao J, Baker RK, Tran E, Zhan L, Kieffer TJ. 2023; Differentiation of stem cell-derived pancreatic progenitors into insulin-secreting islet clusters in a multiwell-based static 3D culture system. Cell Rep Methods. 3:100466. DOI:
10.1016/j.crmeth.2023.100466. PMID:
37323565. PMCID:
PMC10261893.
108. Huang L, Desai R, Conrad DN, et al. 2021; Commitment and oncogene-induced plasticity of human stem cell-derived pancreatic acinar and ductal organoids. Cell Stem Cell. 28:1090–1104.e6. DOI:
10.1016/j.stem.2021.03.022. PMID:
33915081. PMCID:
PMC8202734.
109. Simsek S, Zhou T, Robinson CL, et al. 2016; Modeling cystic fibrosis using pluripotent stem cell-derived human pancreatic ductal epithelial cells. Stem Cells Transl Med. 5:572–579. DOI:
10.5966/sctm.2015-0276. PMID:
27034411. PMCID:
PMC4835252.
110. Breunig M, Merkle J, Wagner M, et al. 2021; Modeling plasticity and dysplasia of pancreatic ductal organoids derived from human pluripotent stem cells. Cell Stem Cell. 28:1105–1124.e19. DOI:
10.1016/j.stem.2021.03.005. PMID:
33915078. PMCID:
PMC8461636.
111. Ng NHJ, Jasmen JB, Lim CS, et al. 2019; HNF4A haploin-sufficiency in MODY1 abrogates liver and pancreas differentiation from patient-derived induced pluripotent stem cells. iScience. 16:192–205. DOI:
10.1016/j.isci.2019.05.032. PMID:
31195238. PMCID:
PMC6562146.
112. Cujba AM, Alvarez-Fallas ME, Pedraza-Arevalo S, et al. 2022; An HNF1α truncation associated with maturity-onset diabetes of the young impairs pancreatic progenitor differentiation by antagonizing HNF1β function. Cell Rep. 38:110425. DOI:
10.1016/j.celrep.2022.110425. PMID:
35235779. PMCID:
PMC8905088.
113. Kim J, Hoffman JP, Alpaugh RK, et al. 2013; An iPSC line from human pancreatic ductal adenocarcinoma undergoes early to invasive stages of pancreatic cancer progression. Cell Rep. 3:2088–2099. DOI:
10.1016/j.celrep.2013.05.036. PMID:
23791528. PMCID:
PMC3726210.
114. Hohwieler M, Illing A, Hermann PC, et al. 2017; Human pluripotent stem cell-derived acinar/ductal organoids generate human pancreas upon orthotopic transplantation and allow disease modelling. Gut. 66:473–486. DOI:
10.1136/gutjnl-2016-312423. PMID:
27633923. PMCID:
PMC5534761.
115. Shapiro AMJ, Thompson D, Donner TW, et al. 2021; Insulin expression and C-peptide in type 1 diabetes subjects implanted with stem cell-derived pancreatic endoderm cells in an encapsulation device. Cell Rep Med. 2:100466. DOI:
10.1016/j.xcrm.2021.100466. PMID:
35028608. PMCID:
PMC8714853.
116. Ramzy A, Thompson DM, Ward-Hartstonge KA, et al. 2021; Implanted pluripotent stem-cell-derived pancreatic endoderm cells secrete glucose-responsive C-peptide in patients with type 1 diabetes. Cell Stem Cell. 28:2047–2061.e5. DOI:
10.1016/j.stem.2021.10.003. PMID:
34861146.