Int J Stem Cells.  2024 Aug;17(3):253-269. 10.15283/ijsc24036.

Pancreatic Diseases: Genetics and Modeling Using Human Pluripotent Stem Cells

Affiliations
  • 1Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea
  • 2College of Pharmacy, Ewha Womans University, Seoul, Korea

Abstract

Pancreas serves endocrine and exocrine functions in the body; thus, their pathology can cause a broad range of irreparable consequences. Endocrine functions include the production of hormones such as insulin and glucagon, while exocrine functions involve the secretion of digestive enzymes. Disruption of these functions can lead to conditions like diabetes mellitus and exocrine pancreatic insufficiency. Also, the symptoms and causality of pancreatic cancer very greatly depends on their origin: pancreatic ductal adenocarcinoma is one of the most fatal cancer; however, most of tumor derived from endocrine part of pancreas are benign. Pancreatitis, an inflammation of the pancreatic tissues, is caused by excessive alcohol consumption, the bile duct obstruction by gallstones, and the premature activation of digestive enzymes in the pancreas. Hereditary pancreatic diseases, such as maturity-onset diabetes of the young and hereditary pancreatitis, can be a candidate for disease modeling using human pluripotent stem cells (hPSCs), due to their strong genetic influence. hPSC-derived pancreatic differentiation has been established for cell replacement therapy for diabetic patients and is robustly used for disease modeling. The disease modeling platform that allows interactions between immune cells and pancreatic cells is necessary to perform in-depth investigation of disease pathogenesis.

Keyword

Pancreatic diseases; Diabetes mellitus; Pancreatic neoplasms; Pancreatitis; Pluripotent stem cells

Figure

  • Fig. 1 The role and anatomy of the pancreas. (A) The anatomy of the pancreas is shown. The endocrine part is composed of α-cells, β-cells, γ-cells, δ-cells, and ε-cells. The exocrine part is composed of ductal cells, which produce bicarbonate (HCO3−) and acinar cells, which produce lipase, amylase, and protease. The bile duct joins the main pancreatic duct before it is connected with the duodenum at the ampulla of Vater. (B) In a healthy pancreas, the activation of trypsinogen only occurs by the serine protease enterokinase in the duodenum, which is the first part of small intestine. This protects the pancreatic tissues from protease digestion. In acute pancreatitis, trypsin can autoactivate trypsinogen in the pancreas and this abnormal intrapancreatic trypsin activity results in damage to pancreatic acinar cells, triggering inflammation. Recurrent acute pancreatitis can cause necrosis and fibrosis of pancreas leading permanent deformation. (C) The protein structure of the human trypsinogen is shown. The sequences of NP_002760.1 was visualized using the PROTTER (https://wlab.ethz.ch/protter). Cleavage of trypsinogen can cause its autoactivation or degradation, depending on the cleavage site. Autoactivation occurs when the Phe18-Asp19 peptide bond is cleaved by chymotrypsin C (CTRC) and the Lys23-Ile24 peptide bond is cleaved by trypsin. Degradation is caused when the Leu81-Glu82 peptide bond is cleaved by CTRC and the Arg122-Val123 peptide bond is cleaved by trypsin.

  • Fig. 2 Hereditary pancreatic diseases-associated genetic variants. All variants, which are classified as pathogenic or likely pathogenic for each gene, HNF4A (MODY1) (A), GCK (MODY2) (B), PDX1 (MODY4) (C), HNF1B (MODY5) (D), PRSS1 (E), SPINK1 (F), CTRC (G), and CPA1 (H), are selected from on the ClinVar (https://www.ncbi.nlm.nih.gov/clinvar). Detailed information of variants is available in Table 2. The variants are annotated where exons are shown as boxes and intros are depicted as lines. The consequence of variants also demonstrated at the protein level. The pathogenic variants are indicated in red, while likely pathogenic variants are highlighted in orange, and those classified as pathogenic/likely pathogenic, or conflicting are marked in black.

  • Fig. 3 Pancreatic development and human stem cell-derived differentiation. (A) Development of pancreas. The scheme is modified from Jin and Jiang (1). Epiblast gives rise to three germ layers including ectoderm, mesoderm, and endoderm. The definitive endoderm (DE) then develops into the primitive gut tube (PGT), which is sometimes referred to as the gut tube endoderm (GTE). PGT subsequently differentiates into the foregut, midgut, and hindgut. Pancreatic progenitor (PP) cells emerge from the posterior region of the foregut. These PP cells form dorsal and ventral pancreatic buds that eventually merge, creating a multi-layered epithelial system with a lumen. The pancreatic epithelium undergoes expansion and branching, giving rise to the tip domain and trunk domain. The tip domain, which expresses the transcription factor PTF1A, differentiates into acinar progenitors, while the trunk domain, which expresses NKX6-1, gives rise to endocrine and ductal progenitors. The appropriate pancreatic cell types can be obtained through the directed expression of additional lineage-specific transcription factors in the PP cells. The pancreatic differentiation from human pluripotent stem cells (hPSCs) has established to mimic in vivo development by coordinating the timing of the activation or inhibition of signaling pathways using a variety of growth factors and small molecules. (B) Endocrine differentiation from hPSCs. Compounds and growth factors required for pancreatic endocrine differentiation from hPSCs are summarized. hESC: human embryonic stem cell, PFG: posterior foregut, PEC: pancreatic endocrine cells, EN: endocrine cell, SC-β cells: stem cell-derived pancreatic β-cells, EP: endocrine precursor, IHI: immature hPSC-islets, MHI: maturing hPSC-islets, Activin A: transforming growth factor (TGF)-β family member, BMP, bone morphogenetic protein, CHIR: CHIR99021, WNT activator, RA: retinoic acid, LDN: LDN193189, BMP pathway inhibitor, SANT1: hedgehog inhibitor, PDbU: phorbol 12,13-dibutyrate, protein kinase C activator, TPPB: protein kinase C activator, XXI: γ-secretase inhibitor, Notch inhibitor, T3: L-3,3’,5-triiodothyronine, LatA: Latrunculin A, Betacellulin: EGF family, actin depolymerizer, ALK5i: ALK5 inhibitor, LAA: L-ascorbic acid, NAC: N-acetyl cysteine, GSI XX: γ-secretase inhibitor, Trolox: vitamin E analog, R428: AXL inhibitor, GDF-8: growth differentiation factor-8, TGF-β family member, MCX-928: WNT activator. (C) Exocrine differentiation from hPSCs. Compounds and growth factors required for pancreatic exocrine differentiation from hPSCs are summarized. PE: pancreatic endoderm, PDEC: pancreatic ductal epithelial cell, PTrLO: pancreatic trunk-like organoids, PDLO: pancreatic duct-like organoids, PO: pancreatic organoids, DO: ductal organoids, AO: acinar organoids, VPA: valproic acid, Dorsomorphin: BMP inhibitor, PD0325901: MEK/ERK pathway inhibitor, SB431542: TGF-β inhibitor, A83-01: TGF-β receptor inhibitor, SKL2001:Wnt agonist, Foxy5: WNT5A agonist, DBZ: γ-secretase inhibitor, HPI 1: hedgehog inhibitors, XMU-MP-1: MST1/2 inhibitor, IQ1: Wnt inhibitor, iCRT-14: Wnt inhibitor, CPTH2: histone acetyltransferase inhibitor, SB939: pracinostat, pan-HDAC inhibitor, WT161: HDAC6 inhibitor, XAV939: Wnt inhibitor, EPZ011989: histone methyltransferase inhibitor.


Reference

References

1. Saeedi P, Petersohn I, Salpea P, et al. 2019; Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract. 157:107843. DOI: 10.1016/j.diabres.2019.107843. PMID: 31518657.
2. Iannuzzi JP, King JA, Leong JH, et al. 2022; Global incidence of acute pancreatitis is increasing over time: a systematic review and meta-analysis. Gastroenterology. 162:122–134. DOI: 10.1053/j.gastro.2021.10.045. PMID: 34571026.
3. Park W, Chawla A, O'Reilly EM. 2021; Pancreatic cancer: a review. JAMA. 326:851–862. DOI: 10.1001/jama.2021.13027. PMID: 34547082. PMCID: PMC9363152.
4. Redondo MJ, Balasubramanyam A. 2021; Toward an improved classification of type 2 diabetes: lessons from research into the heterogeneity of a complex disease. J Clin Endocrinol Metab. 106:e4822–e4833. DOI: 10.1210/clinem/dgab545. PMID: 34291809. PMCID: PMC8787852.
5. Sodhi M, Rezaeianzadeh R, Kezouh A, Etminan M. 2023; Risk of gastrointestinal adverse events associated with glucagon-like peptide-1 receptor agonists for weight loss. JAMA. 330:1795–1797. DOI: 10.1001/jama.2023.19574. PMID: 37796527. PMCID: PMC10557026.
6. Patel F, Gan A, Chang K, Vega KJ. 2023; Acute pancreatitis in a patient taking semaglutide. Cureus. 15:e43773. DOI: 10.7759/cureus.43773. PMID: 37731423. PMCID: PMC10506915.
7. Abdulreda MH, Caicedo A, Berggren PO. 2013; A natural body window to study human pancreatic islet cell function and survival. CellR4 Repair Replace Regen Reprogram. 1:111–122. PMID: 29497630. PMCID: PMC5828509.
8. Dolenšek J, Rupnik MS, Stožer A. 2015; Structural similarities and differences between the human and the mouse pan-creas. Islets. 7:e1024405. DOI: 10.1080/19382014.2015.1024405. PMID: 26030186. PMCID: PMC4589993.
9. Furman BL. 2021; Streptozotocin-induced diabetic models in mice and rats. Curr Protoc. 1:e78. DOI: 10.1002/cpz1.78. PMID: 33905609.
10. Yang H, Wright JR Jr. 2002; Human beta cells are exceedingly resistant to streptozotocin in vivo. Endocrinology. 143:2491–2495. DOI: 10.1210/endo.143.7.8901. PMID: 12072379.
11. Németh BC, Wartmann T, Halangk W, Sahin-Tóth M. 2013; Autoactivation of mouse trypsinogens is regulated by chymotrypsin C via cleavage of the autolysis loop. J Biol Chem. 288:24049–24062. DOI: 10.1074/jbc.m113.478800. PMID: 23814066. PMCID: PMC3745349.
12. Calà G, Sina B, De Coppi P, Giobbe GG, Gerli MFM. 2023; Primary human organoids models: current progress and key milestones. Front Bioeng Biotechnol. 11:1058970. DOI: 10.3389/fbioe.2023.1058970. PMID: 36959902. PMCID: PMC10029057.
13. Fasolino M, Schwartz GW, Patil AR, et al. 2022; Single-cell multi-omics analysis of human pancreatic islets reveals novel cellular states in type 1 diabetes. Nat Metab. 4:284–299. DOI: 10.1530/ey.19.10.15. PMID: 35228745. PMCID: PMC8938904.
14. Millman JR, Xie C, Van Dervort A, Gürtler M, Pagliuca FW, Melton DA. 2016; Generation of stem cell-derived β-cells from patients with type 1 diabetes. Nat Commun. 7:11463. DOI: 10.1038/ncomms11463. PMID: 27163171. PMCID: PMC4866045.
15. Boj SF, Hwang CI, Baker LA, et al. 2015; Organoid models of human and mouse ductal pancreatic cancer. Cell. 160:324–338. DOI: 10.1016/j.cell.2014.12.021. PMID: 25557080. PMCID: PMC4334572.
16. Huang L, Holtzinger A, Jagan I, et al. 2015; Ductal pancreatic cancer modeling and drug screening using human pluripotent stem cell- and patient-derived tumor organoids. Nat Med. 21:1364–1371. DOI: 10.3410/f.725876995.793513150. PMID: 26501191. PMCID: PMC4753163.
17. Seino T, Kawasaki S, Shimokawa M, et al. 2018; Human pancreatic tumor organoids reveal loss of stem cell niche factor dependence during disease progression. Cell Stem Cell. 22:454–467.e6. DOI: 10.1016/j.stem.2017.12.009. PMID: 29337182.
18. Loomans CJM, Williams Giuliani N, Balak J, et al. 2018; Expansion of adult human pancreatic tissue yields organoids harboring progenitor cells with endocrine differentia-tion potential. Stem Cell Reports. 10:712–724. DOI: 10.1016/j.stemcr.2018.02.005. PMID: 29539434. PMCID: PMC5918840.
19. Bonfanti P, Nobecourt E, Oshima M, et al. 2015; Ex vivo expansion and differentiation of human and mouse fetal pancreatic progenitors are modulated by epidermal growth factor. Stem Cells Dev. 24:1766–1778. DOI: 10.1089/scd.2014.0550. PMID: 25925840.
20. Adolph TE, Mayr L, Grabherr F, Schwärzler J, Tilg H. 2019; Pancreas-microbiota cross talk in health and disease. Annu Rev Nutr. 39:249–266. DOI: 10.1146/annurev-nutr-082018-124306. PMID: 31433743.
21. Puri S, Folias AE, Hebrok M. 2015; Plasticity and dedifferentiation within the pancreas: development, homeostasis, and disease. Cell Stem Cell. 16:18–31. DOI: 10.1016/j.stem.2014.11.001. PMID: 25465113. PMCID: PMC4289422.
22. Röder PV, Wu B, Liu Y, Han W. 2016; Pancreatic regulation of glucose homeostasis. Exp Mol Med. 48:e219. DOI: 10.1038/emm.2016.6. PMID: 26964835. PMCID: PMC4892884.
23. Brissova M, Fowler MJ, Nicholson WE, et al. 2005; Assessment of human pancreatic islet architecture and composition by laser scanning confocal microscopy. J Histochem Cytochem. 53:1087–1097. DOI: 10.1369/jhc.5c6684.2005. PMID: 15923354.
24. Keller J, Layer P. 2005; Human pancreatic exocrine response to nutrients in health and disease. Gut. 54(Suppl 6):vi1–vi28. DOI: 10.1136/gut.2005.065946. PMID: 15951527. PMCID: PMC1867805.
25. Domínguez-Muñoz JE. 2007; Pancreatic enzyme therapy for pancreatic exocrine insufficiency. Curr Gastroenterol Rep. 9:116–122. DOI: 10.1007/s11894-007-0005-4. PMID: 17418056.
26. Halbrook CJ, Lyssiotis CA, Pasca di Magliano M, Maitra A. 2023; Pancreatic cancer: advances and challenges. Cell. 186:1729–1754. DOI: 10.1016/j.cell.2023.02.014. PMID: 37059070. PMCID: PMC10182830.
27. Siegel RL, Miller KD, Wagle NS, Jemal A. 2023; Cancer statistics, 2023. CA Cancer J Clin. 73:17–48. DOI: 10.3322/caac.21763. PMID: 36633525.
28. Pantaleo A, Forte G, Fasano C, et al. 2023; Understanding the genetic landscape of pancreatic ductal adenocarcinoma to support personalized medicine: a systematic review. Can-cers (Basel). 16:56. DOI: 10.3390/cancers16010056. PMID: 38201484. PMCID: PMC10778202.
29. Ying H, Dey P, Yao W, et al. 2016; Genetics and biology of pancreatic ductal adenocarcinoma. Genes Dev. 30:355–385. DOI: 10.1101/gad.275776.115. PMID: 16702400.
30. Leung PS. 2010; Common pancreatic disease. Adv Exp Med Biol. 690:29–51. DOI: 10.1007/978-90-481-9060-7_3. PMID: 20700836. PMCID: PMC7121708.
31. Weiss FU, Laemmerhirt F, Lerch MM. 2019; Etiology and risk factors of acute and chronic pancreatitis. Visc Med. 35:73–81. DOI: 10.1159/000499138. PMID: 31192240. PMCID: PMC6514487.
32. Mitra V, Munnelly S, Grammatikopoulos T, et al. 2023; The top 10 research priorities for pancreatitis: findings from a James Lind Alliance priority setting partnership. Lancet Gastro-enterol Hepatol. 8:780–782. DOI: 10.1016/s2468-1253(23)00151-6. PMID: 37356452.
33. Bellin MD, Whitcomb DC, Abberbock J, et al. 2017; Patient and disease characteristics associated with the presence of diabetes mellitus in adults with chronic pancreatitis in the United States. Am J Gastroenterol. 112:1457–1465. DOI: 10.1038/ajg.2017.181. PMID: 28741615. PMCID: PMC6168293.
34. Kleeff J, Whitcomb DC, Shimosegawa T, et al. 2017; Chronic pancreatitis. Nat Rev Dis Primers. 3:17060. DOI: 10.1038/nrdp.2017.61. PMID: 28880010.
35. Ma DM, Dong XW, Han X, et al. 2023; Pancreatitis and pancreatic cancer risk. Technol Cancer Res Treat. 22:15330338231164875. DOI: 10.1177/15330338231164875. PMID: 36972517. PMCID: PMC10052482.
36. Beltrand J, Busiah K, Vaivre-Douret L, et al. 2020; Neonatal diabetes mellitus. Front Pediatr. 8:540718. DOI: 10.3389/fped.2020.540718. PMID: 33102403. PMCID: PMC7554616.
37. Urakami T. 2019; Maturity-onset diabetes of the young (MODY): current perspectives on diagnosis and treatment. Diabetes Metab Syndr Obes. 12:1047–1056. DOI: 10.2147/dmso.s179793. PMID: 31360071. PMCID: PMC6625604.
38. Tshivhase A, Matsha T, Raghubeer S. 2021; Diagnosis and treatment of MODY: an updated mini review. Appl Sci. 11:9436. DOI: 10.3390/app11209436.
39. Nkonge KM, Nkonge DK, Nkonge TN. 2020; The epidemiology, molecular pathogenesis, diagnosis, and treatment of matu-rity-onset diabetes of the young (MODY). Clin Diabetes Endocrinol. 6:20. DOI: 10.1186/s40842-020-00112-5. PMID: 33292863. PMCID: PMC7640483.
40. Ebrahim N, Shakirova K, Dashinimaev E. 2022; PDX1 is the cornerstone of pancreatic β-cell functions and identity. Front Mol Biosci. 9:1091757. DOI: 10.3389/fmolb.2022.1091757. PMID: 36589234. PMCID: PMC9798421.
41. Rubio-Cabezas O, Minton JA, Kantor I, Williams D, Ellard S, Hattersley AT. 2010; Homozygous mutations in NEUROD1 are responsible for a novel syndrome of permanent neonatal diabetes and neurological abnormalities. Diabetes. 59:2326–2331. DOI: 10.2337/db10-0011. PMID: 20573748. PMCID: PMC2927956.
42. Beinsteiner B, Billas IML, Moras D. 2023; Structural insights into the HNF4 biology. Front Endocrinol (Lausanne). 14:1197063. DOI: 10.3389/fendo.2023.1197063. PMID: 37404310. PMCID: PMC10315846.
43. Delvecchio M, Pastore C, Giordano P. 2020; Treatment options for MODY patients: a systematic review of literature. Dia-betes Ther. 11:1667–1685. DOI: 10.1007/s13300-020-00864-4. PMID: 32583173. PMCID: PMC7376807.
44. Hulín J, Škopková M, Valkovičová T, et al. 2020; Clinical implications of the glucokinase impaired function - GCK MODY today. Physiol Res. 69:995–1011. DOI: 10.33549/physiolres.934487. PMID: 33129248. PMCID: PMC8549873.
45. Zhao Q, Ding L, Yang Y, et al. 2022; Clinical characteristics of patients with HNF1-alpha MODY: a literature review and retrospective chart review. Front Endocrinol (Lausanne). 13:900489. DOI: 10.3389/fendo.2022.900489. PMID: 35795147. PMCID: PMC9252268.
46. Shepherd M, Ellis I, Ahmad AM, et al. 2001; Predictive genetic testing in maturity-onset diabetes of the young (MODY). Diabet Med. 18:417–421. DOI: 10.1046/j.1464-5491.2001.00447.x. PMID: 11472455.
47. Francis Y, Tiercelin C, Alexandre-Heyman L, Larger E, Dubois-Laforgue D. 2022; HNF1B-MODY masquerading as type 1 diabetes: a pitfall in the etiological diagnosis of diabetes. J Endocr Soc. 6:bvac087. DOI: 10.1210/jendso/bvac087. PMID: 35733830. PMCID: PMC9206723.
48. Neve B, Fernandez-Zapico ME, Ashkenazi-Katalan V, et al. 2005; Role of transcription factor KLF11 and its diabetes-asso-ciated gene variants in pancreatic beta cell function. Proc Natl Acad Sci U S A. 102:4807–4812. DOI: 10.1073/pnas.0409177102. PMID: 15774581. PMCID: PMC554843.
49. Johansson BB, Fjeld K, El Jellas K, et al. 2018; The role of the carboxyl ester lipase (CEL) gene in pancreatic disease. Pancreatology. 18:12–19.
50. Nelson HA, Johnson LM. 2021; Hereditary pancreatitis in a young adult: acute to chronic. Clin Biochem. 98:78–80. DOI: 10.1016/j.clinbiochem.2021.09.006. PMID: 34529996.
51. Rebours V, Boutron-Ruault MC, Schnee M, et al. 2009; The natural history of hereditary pancreatitis: a national series. Gut. 58:97–103. DOI: 10.1136/gut.2008.149179. PMID: 18755888.
52. Rebours V, Boutron-Ruault MC, Schnee M, et al. 2008; Risk of pancreatic adenocarcinoma in patients with hereditary pancreatitis: a national exhaustive series. Am J Gastroenterol. 103:111–119. DOI: 10.1111/j.1572-0241.2007.01597.x. PMID: 18184119.
53. Piseddu I, Vielhauer J, Mayerle J. 2022; Genetic testing in acute and chronic pancreatitis. Curr Treat Options Gastro. 20:429–444. DOI: 10.1007/s11938-022-00383-0. PMID: 11276378.
54. Rinderknecht H. 1986; Activation of pancreatic zymogens. Nor-mal activation, premature intrapancreatic activation, protective mechanisms against inappropriate activation. Dig Dis Sci. 31:314–321. DOI: 10.1007/BF01318124. PMID: 2936587.
55. Hegyi E, Sahin-Tóth M. 2017; Genetic risk in chronic pancrea-titis: the trypsin-dependent pathway. Dig Dis Sci. 62:1692–1701. DOI: 10.1007/s10620-017-4601-3. PMID: 28536777. PMCID: PMC5487703.
56. Girodon E, Rebours V, Chen JM, et al. 2021; Clinical interpretation of PRSS1 variants in patients with pancreatitis. Clin Res Hepatol Gastroenterol. 45:101497. DOI: 10.1016/j.clinre.2020.07.004. PMID: 33257277.
57. Németh BC, Sahin-Tóth M. 2014; Human cationic trypsinogen (PRSS1) variants and chronic pancreatitis. Am J Physiol Gastrointest Liver Physiol. 306:G466–G473. DOI: 10.1152/ajpgi.00419.2013. PMID: 24458023. PMCID: PMC3949028.
58. Rowen L, Koop BF, Hood L. 1996; The complete 685-kilobase DNA sequence of the human beta T cell receptor locus. Science. 272:1755–1762. DOI: 10.1126/science.272.5269.1755. PMID: 8650574.
59. Whitcomb DC, Gorry MC, Preston RA, et al. 1996; Hereditary pancreatitis is caused by a mutation in the cationic trypsinogen gene. Nat Genet. 14:141–145. DOI: 10.1038/ng1096-141. PMID: 8841182.
60. Gorry MC, Gabbaizedeh D, Furey W, et al. 1997; Mutations in the cationic trypsinogen gene are associated with recurrent acute and chronic pancreatitis. Gastroenterology. 113:1063–1068. DOI: 10.1053/gast.1997.v113.pm9322498. PMID: 9322498.
61. Teich N, Mössner J, Keim V. 1998; Mutations of the cationic try-psinogen in hereditary pancreatitis. Hum Mutat. 12:39–43. DOI: 10.1002/(SICI)1098-1004(1998)12:1<39::AID-HUMU6>3.0.CO;2-P. PMID: 9633818.
62. Howes N, Lerch MM, Greenhalf W, et al. 2004; Clinical and genetic characteristics of hereditary pancreatitis in Europe. Clin Gastroenterol Hepatol. 2:252–261. DOI: 10.1016/s1542-3565(04)00013-8. PMID: 15017610.
63. Whitcomb DC, Preston RA, Aston CE, et al. 1996; A gene for hereditary pancreatitis maps to chromosome 7q35. Gastro-enterology. 110:1975–1980. DOI: 10.1053/gast.1996.v110.pm8964426. PMID: 8964426.
64. Solomon S, Gelrud A, Whitcomb DC. 2013; Low penetrance pancreatitis phenotype in a Venezuelan kindred with a PRSS1 R122H mutation. JOP. 14:187–189. DOI: 10.6092/1590-8577/1276. PMID: 23474566.
65. Szmola R, Sahin-Tóth M. 2007; Chymotrypsin C (caldecrin) promotes degradation of human cationic trypsin: identity with Rinderknecht’s enzyme Y. Proc Natl Acad Sci U S A. 104:11227–11232.
66. Wartmann T, Mayerle J, Kähne T, et al. 2010; Cathepsin L inactivates human trypsinogen, whereas cathepsin L-deletion reduces the severity of pancreatitis in mice. Gastroenterology. 138:726–737. DOI: 10.1053/j.gastro.2009.10.048. PMID: 19900452. PMCID: PMC2941736.
67. Szabó A, Sahin-Tóth M. 2012; Determinants of chymotrypsin C cleavage specificity in the calcium-binding loop of human cationic trypsinogen. FEBS J. 279:4283–4292. DOI: 10.1111/febs.12018. PMID: 23035638. PMCID: PMC3573857.
68. Szabó A A, Sahin-Tóth M. 2012; Increased activation of hereditary pancreatitis-associated human cationic trypsinogen mutants in presence of chymotrypsin C. J Biol Chem. 287:20701–20710. DOI: 10.1074/jbc.m112.360065. PMID: 22539344. PMCID: PMC3370252.
69. Geisz A, Hegyi P, Sahin-Tóth M. 2013; Robust autoactivation, chymotrypsin C independence and diminished secretion define a subset of hereditary pancreatitis-associated cationic trypsinogen mutants. FEBS J. 280:2888–2899. DOI: 10.1111/febs.12292. PMID: 23601753. PMCID: PMC3676443.
70. Joergensen MT, Geisz A, Brusgaard K, et al. 2011; Intragenic duplication: a novel mutational mechanism in hereditary pancreatitis. Pancreas. 40:540–546. DOI: 10.1097/MPA.0b013e3182152fdf. PMID: 21499207. PMCID: PMC3088488.
71. Chen JM, Kukor Z, Le Maréchal C, et al. 2003; Evolution of trypsinogen activation peptides. Mol Biol Evol. 20:1767–1777. DOI: 10.1093/molbev/msg183. PMID: 12832630.
72. Nemoda Z, Sahin-Tóth M. 2005; The tetra-aspartate motif in the activation peptide of human cationic trypsinogen is essential for autoactivation control but not for enteropeptidase recognition. J Biol Chem. 280:29645–29652. DOI: 10.1074/jbc.m505661200. PMID: 15970597. PMCID: PMC1420407.
73. LaRusch J, Whitcomb DC. 2011; Genetics of pancreatitis. Curr Opin Gastroenterol. 27:467–474. DOI: 10.1097/mog.0b013e328349e2f8. PMID: 21844754. PMCID: PMC3704192.
74. Lasson A, Borgström A, Ohlsson K. 1986; Elevated pancreatic secretory trypsin inhibitor levels during severe inflammatory disease, renal insufficiency, and after various surgical pro-cedures. Scand J Gastroenterol. 21:1275–1280. DOI: 10.3109/00365528608996455. PMID: 3810002.
75. Ogawa M. 1988; Pancreatic secretory trypsin inhibitor as an acute phase reactant. Clin Biochem. 21:19–25. DOI: 10.1016/s0009-9120(88)80107-3. PMID: 2449986.
76. Pfützer RH, Barmada MM, Brunskill AP, et al. 2000; SPINK1/PSTI polymorphisms act as disease modifiers in familial and idiopathic chronic pancreatitis. Gastroenterology. 119:615–623. DOI: 10.1053/gast.2000.18017. PMID: 10982753.
77. Aoun E, Muddana V, Papachristou GI, Whitcomb DC. 2010; SPINK1 N34S is strongly associated with recurrent acute pancreatitis but is not a risk factor for the first or sentinel acute pancreatitis event. Am J Gastroenterol. 105:446–451. DOI: 10.1038/ajg.2009.630. PMID: 19888199.
78. Kume K, Masamune A, Kikuta K, Shimosegawa T. 2006; [215G>A; IVS3+2T>C] mutation in the SPINK1 gene causes exon 3 skipping and loss of the trypsin binding site. Gut. 55:1214.
79. Király O, Wartmann T, Sahin-Tóth M. 2007; Missense mutations in pancreatic secretory trypsin inhibitor (SPINK1) cause intracellular retention and degradation. Gut. 56:1433–1438. DOI: 10.1136/gut.2006.115725. PMID: 17525091. PMCID: PMC2000263.
80. Király O, Boulling A, Witt H, et al. 2007; Signal peptide variants that impair secretion of pancreatic secretory trypsin inhibitor (SPINK1) cause autosomal dominant hereditary pancreatitis. Hum Mutat. 28:469–476. DOI: 10.1002/humu.20471. PMID: 17274009. PMCID: PMC2765331.
81. Kereszturi E, Király O, Sahin-Tóth M. 2009; Minigene analysis of intronic variants in common SPINK1 haplotypes associated with chronic pancreatitis. Gut. 58:545–549. DOI: 10.1136/gut.2008.164947. PMID: 18978175. PMCID: PMC2677899.
82. Boulling A, Le Maréchal C, Trouvé P, Raguénès O, Chen JM, Férec C. 2007; Functional analysis of pancreatitis-associated missense mutations in the pancreatic secretory trypsin inhibitor (SPINK1) gene. Eur J Hum Genet. 15:936–942. DOI: 10.1038/sj.ejhg.5201873. PMID: 17568390.
83. Threadgold J, Greenhalf W, Ellis I, et al. 2002; The N34S mutation of SPINK1 (PSTI) is associated with a familial pattern of idiopathic chronic pancreatitis but does not cause the disease. Gut. 50:675–681. DOI: 10.1136/gut.50.5.675. PMID: 11950815. PMCID: PMC1773194.
84. Aoun E, Chang CC, Greer JB, Papachristou GI, Barmada MM, Whitcomb DC. 2008; Pathways to injury in chronic pancreatitis: decoding the role of the high-risk SPINK1 N34S haplotype using meta-analysis. PLoS One. 3:e2003. DOI: 10.1371/journal.pone.0002003. PMID: 18414673. PMCID: PMC2289874.
85. Zhou J, Sahin-Tóth M. 2011; Chymotrypsin C mutations in chronic pancreatitis. J Gastroenterol Hepatol. 26:1238–1246. DOI: 10.1111/j.1440-1746.2011.06791.x. PMID: 21631589. PMCID: PMC3142265.
86. Rosendahl J, Witt H, Szmola R, et al. 2008; Chymotrypsin C (CTRC) variants that diminish activity or secretion are associated with chronic pancreatitis. Nat Genet. 40:78–82. DOI: 10.3410/f.1104782.560856. PMID: 18059268. PMCID: PMC2650829.
87. Masson E, Chen JM, Scotet V, Le Maréchal C, Férec C. 2008; Association of rare chymotrypsinogen C (CTRC) gene variations in patients with idiopathic chronic pancreatitis. Hum Genet. 123:83–91. DOI: 10.1007/s00439-007-0459-3. PMID: 18172691.
88. Beer S, Zhou J, Szabó A, et al. 2013; Comprehensive functional analysis of chymotrypsin C (CTRC) variants reveals distinct loss-of-function mechanisms associated with pancreatitis risk. Gut. 62:1616–1624. DOI: 10.1136/gutjnl-2012-303090. PMID: 22942235. PMCID: PMC3660471.
89. Witt H, Beer S, Rosendahl J, et al. 2013; Variants in CPA1 are strongly associated with early onset chronic pancreatitis. Nat Genet. 45:1216–1220. DOI: 10.1038/ng.2730. PMID: 23955596. PMCID: PMC3909499.
90. Németh BC, Orekhova A, Zhang W, et al. 2020; Novel p.K374E variant of CPA1 causes misfolding-induced hereditary pancreatitis with autosomal dominant inheritance. Gut. 69:790–792. DOI: 10.1136/gutjnl-2019-318751. PMID: 31005883. PMCID: PMC8596457.
91. Schneider A, Larusch J, Sun X, et al. 2011; Combined bicarbonate conductance-impairing variants in CFTR and SPINK1 variants are associated with chronic pancreatitis in patients without cystic fibrosis. Gastroenterology. 140:162–171. DOI: 10.1053/j.gastro.2010.10.045. PMID: 20977904. PMCID: PMC3171690.
92. Pezzulo AA, Tang XX, Hoegger MJ, et al. 2012; Reduced airway surface pH impairs bacterial killing in the porcine cystic fibrosis lung. Nature. 487:109–113. DOI: 10.3410/f.717948506.793453557. PMID: 22763554. PMCID: PMC3390761.
93. McMaster P. 1979; Bile studies after liver transplantation. Ann R Coll Surg Engl. 61:435–440. PMID: 115368. PMCID: PMC2492250.
94. Derichs N, Jin BJ, Song Y, Finkbeiner WE, Verkman AS. 2011; Hyperviscous airway periciliary and mucous liquid layers in cystic fibrosis measured by confocal fluorescence photobleaching. FASEB J. 25:2325–2332. DOI: 10.1096/fj.10-179549. PMID: 21427214. PMCID: PMC3114535.
95. Chen JH, Stoltz DA, Karp PH, et al. 2010; Loss of anion transport without increased sodium absorption characterizes newborn porcine cystic fibrosis airway epithelia. Cell. 143:911–923. DOI: 10.3410/f.7064957.7627055. PMID: 21145458. PMCID: PMC3057187.
96. Stallings VA, Stark LJ, Robinson KA, Feranchak AP, Quinton H. 2008; Evidence-based practice recommendations for nutrition-related management of children and adults with cystic fibrosis and pancreatic insufficiency: results of a systematic review. J Am Diet Assoc. 108:832–839. DOI: 10.1016/j.jada.2008.02.020. PMID: 18442507.
97. Hegyi P, Wilschanski M, Muallem S, et al. 2016; CFTR: a new horizon in the pathomechanism and treatment of pan-creatitis. Rev Physiol Biochem Pharmacol. 170:37–66. DOI: 10.1007/112_2015_5002. PMID: 26856995. PMCID: PMC5232416.
98. Noone PG, Zhou Z, Silverman LM, Jowell PS, Knowles MR, Cohn JA. 2001; Cystic fibrosis gene mutations and pancreatitis risk: relation to epithelial ion transport and trypsin inhibitor gene mutations. Gastroenterology. 121:1310–1319. DOI: 10.1053/gast.2001.29673. PMID: 11729110.
99. Berke G, Gede N, Szadai L, et al. 2022; Bicarbonate defective CFTR variants increase risk for chronic pancreatitis: a meta-analysis. PLoS One. 17:e0276397. DOI: 10.1371/journal.pone.0276397. PMID: 36264955. PMCID: PMC9584382.
100. Liang G, Zhang Y. 2013; Embryonic stem cell and induced pluripotent stem cell: an epigenetic perspective. Cell Res. 23:49–69. DOI: 10.1038/cr.2012.175. PMID: 23247625. PMCID: PMC3541668.
101. Jin W, Jiang W. 2022; Stepwise differentiation of functional pancreatic β cells from human pluripotent stem cells. Cell Regen. 11:24. DOI: 10.1186/s13619-022-00125-8. PMID: 35909206. PMCID: PMC9339430.
102. Duque M, Amorim JP, Bessa J. 2022; Ptf1a function and transcriptional cis-regulation, a cornerstone in vertebrate pancreas development. FEBS J. 289:5121–5136. DOI: 10.1111/febs.16075. PMID: 34125483. PMCID: PMC9545688.
103. Schaffer AE, Freude KK, Nelson SB, Sander M. 2010; Nkx6 transcription factors and Ptf1a function as antagonistic lineage determinants in multipotent pancreatic progenitors. Dev Cell. 18:1022–1029. DOI: 10.1016/j.devcel.2010.05.015. PMID: 20627083. PMCID: PMC3133668.
104. Hogrebe NJ, Maxwell KG, Augsornworawat P, Millman JR. 2021; Generation of insulin-producing pancreatic β cells from multiple human stem cell lines. Nat Protoc. 16:4109–4143. DOI: 10.1038/s41596-021-00560-y. PMID: 34349281. PMCID: PMC8529911.
105. Pagliuca FW, Millman JR, Gürtler M, et al. 2014; Generation of functional human pancreatic β cells in vitro. Cell. 159:428–439. DOI: 10.3410/f.720880254.793524869. PMID: 25303535. PMCID: PMC4617632.
106. Liang S, Zhao J, Baker RK, Tran E, Zhan L, Kieffer TJ. 2023; Differentiation of stem cell-derived pancreatic progenitors into insulin-secreting islet clusters in a multiwell-based static 3D culture system. Cell Rep Methods. 3:100466. DOI: 10.1016/j.crmeth.2023.100466. PMID: 37323565. PMCID: PMC10261893.
107. Veres A, Faust AL, Bushnell HL, et al. 2019; Charting cellular identity during human in vitro β-cell differentiation. Nature. 569:368–373. DOI: 10.1038/s41586-019-1168-5. PMID: 31068696. PMCID: PMC6903417.
108. Huang L, Desai R, Conrad DN, et al. 2021; Commitment and oncogene-induced plasticity of human stem cell-derived pancreatic acinar and ductal organoids. Cell Stem Cell. 28:1090–1104.e6. DOI: 10.1016/j.stem.2021.03.022. PMID: 33915081. PMCID: PMC8202734.
109. Simsek S, Zhou T, Robinson CL, et al. 2016; Modeling cystic fibrosis using pluripotent stem cell-derived human pancreatic ductal epithelial cells. Stem Cells Transl Med. 5:572–579. DOI: 10.5966/sctm.2015-0276. PMID: 27034411. PMCID: PMC4835252.
110. Breunig M, Merkle J, Wagner M, et al. 2021; Modeling plasticity and dysplasia of pancreatic ductal organoids derived from human pluripotent stem cells. Cell Stem Cell. 28:1105–1124.e19. DOI: 10.1016/j.stem.2021.03.005. PMID: 33915078. PMCID: PMC8461636.
111. Ng NHJ, Jasmen JB, Lim CS, et al. 2019; HNF4A haploin-sufficiency in MODY1 abrogates liver and pancreas differentiation from patient-derived induced pluripotent stem cells. iScience. 16:192–205. DOI: 10.1016/j.isci.2019.05.032. PMID: 31195238. PMCID: PMC6562146.
112. Cujba AM, Alvarez-Fallas ME, Pedraza-Arevalo S, et al. 2022; An HNF1α truncation associated with maturity-onset diabetes of the young impairs pancreatic progenitor differentiation by antagonizing HNF1β function. Cell Rep. 38:110425. DOI: 10.1016/j.celrep.2022.110425. PMID: 35235779. PMCID: PMC8905088.
113. Kim J, Hoffman JP, Alpaugh RK, et al. 2013; An iPSC line from human pancreatic ductal adenocarcinoma undergoes early to invasive stages of pancreatic cancer progression. Cell Rep. 3:2088–2099. DOI: 10.1016/j.celrep.2013.05.036. PMID: 23791528. PMCID: PMC3726210.
114. Hohwieler M, Illing A, Hermann PC, et al. 2017; Human pluripotent stem cell-derived acinar/ductal organoids generate human pancreas upon orthotopic transplantation and allow disease modelling. Gut. 66:473–486. DOI: 10.1136/gutjnl-2016-312423. PMID: 27633923. PMCID: PMC5534761.
115. Shapiro AMJ, Thompson D, Donner TW, et al. 2021; Insulin expression and C-peptide in type 1 diabetes subjects implanted with stem cell-derived pancreatic endoderm cells in an encapsulation device. Cell Rep Med. 2:100466. DOI: 10.1016/j.xcrm.2021.100466. PMID: 35028608. PMCID: PMC8714853.
116. Ramzy A, Thompson DM, Ward-Hartstonge KA, et al. 2021; Implanted pluripotent stem-cell-derived pancreatic endoderm cells secrete glucose-responsive C-peptide in patients with type 1 diabetes. Cell Stem Cell. 28:2047–2061.e5. DOI: 10.1016/j.stem.2021.10.003. PMID: 34861146.
117. Leite NC, Sintov E, Meissner TB, et al. 2020; Modeling type 1 diabetes in vitro using human pluripotent stem cells. Cell Rep. 32:107894. DOI: 10.1016/j.celrep.2020.107894. PMID: 32668238. PMCID: PMC7359783.
Full Text Links
  • IJSC
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr