Korean J Orthod.  2024 Jul;54(4):199-209. 10.4041/kjod24.085.

Intraoral ageing of aligners and attachments: Adverse effects on clinical efficiency and release of biologically-active compounds

Affiliations
  • 1Clinic of Orthodontics and Pediatric Dentistry, Center for Dental Medicine, University of Zurich, Zurich, Switzerland
  • 2Department of Biomaterials, School of Dentistry, National and Kapodistrian University of Athens, Athens, Greece

Abstract

The clinical application of aligners is accompanied by the ageing of the polymer appliances and the attachments used, which may result in inefficiency in reaching the predicted range of tooth movement, and release of compounds and microplastics in the oral cavity as a result of the friction, wear and attrition of the aligner and composite attachment. The purpose of this review is to present the mechanism and effects of in vivo ageing; describe the hydrolytic degradation of aligners and enzymatic degradation of composite attachments; examine the ageing pattern of aligners in vivo, under actual clinical scenarios; and identify a link to the discrepancy between predicted and actual clinical outcome. Lastly, strategies to deal with three potentially critical issues associated with the use of aligners, namely the necessity of weekly renewal, the dissimilar mechanical properties of aligner and attachment resulting in wear and plastic deformation of the aligner, and the development of integuments and biofilms with microbial colonization of the appliance, are discussed.

Keyword

Removable; Resin; Aligners; Physical property

Figure

  • Figure 1 Schematic representation of the possible interactions occurring at the biomaterial surfaces exposed to a biological environment. Adapted from the article of Eliades et al. (2003)6 with original copyright holder’s permission.

  • Figure 2 Dark- (A) and bright-field (B) reflected light microscopic images of 1 hr-pellicle developed intraorally on ultra-smooth Ge crystal surface. The integument formed is composed of amorphous proteinaceous material with dendritic arrangement of microbial aggregates. Arrows show early evidence of crystalline development onto the adsorbed species.

  • Figure 3 Secondary (SE) and atomic number contrast backscattered electron images (BE) of 1 hr-pellicle developed intraorally on ultra-smooth Ge crystal surface. Crystalline structures are identified onto the adsorbed biofilm (black areas of low mean atomic number) mainly composed of K and Cl. The X-ray elemental mapping of the area in the insert of the BE image demonstrated that K and Cl have similar distribution even on small dendritic arrangements with low atomic number, indicating KCl formation, whereas P and S are uniformly distributed. No Ca was traced.

  • Figure 4 Reflected light stereomicroscopic image of a retrieved polyethylene terephthalate glycol aligner with evidence of cracking.

  • Figure 5 Polarized light microscopic image of a polyester-urethan aligner with a birefringence pattern indicating residual stresses.

  • Figure 6 Attenuated total reflection Fourier-transform infrared spectroscopy (FTIR) spectra of a polyester-urethane aligner (InvisalignTM, Tempe, Arizona, USA), before (A) and after 1-week intraoral exposure (B, C), with the corresponding reflected light images. The original aligner structure is covered to various extents by proteinaceous material, which creates an amorphous film adsorbed on the aligner surface, as illustrated in the corresponding images.

  • Figure 7 Attenuated total reflection Fourier-transform infrared spectroscopy (FTIR) spectra of a 3D-printed acrylate/urethane dimethacrylate aligner (GraphyTM, Seoul, Korea), before (A) and after 1-week intraoral exposure (B, C), with the corresponding reflected light images. The original aligner structure (A) is covered to various extents by an amorphous proteinaceous material, which clearly demonstrates evidence of mineralization, as illustrated in the spectra and the corresponding images.


Reference

References

1. Papageorgiou SN, Koletsi D, Iliadi A, Peltomaki T, Eliades T. 2020; Treatment outcome with orthodontic aligners and fixed appliances: a systematic review with meta-analyses. Eur J Orthod. 42:331–43. https://doi.org/10.1093/ejo/cjz094. DOI: 10.1093/ejo/cjz094. PMID: 31758191.
Article
2. Quirynen M, Marechal M, Busscher HJ, Weerkamp AH, Arends J, Darius PL, et al. 1989; The influence of surface free-energy on planimetric plaque growth in man. J Dent Res. 68:796–9. https://doi.org/10.1177/00220345890680050801. DOI: 10.1177/00220345890680050801. PMID: 2715472.
Article
3. Merrill EW. 1987; Distinctions and correspondences among surfaces contacting blood. Ann N Y Acad Sci. 516:196–203. https://doi.org/10.1111/j.1749-6632.1987.tb33041.x. DOI: 10.1111/j.1749-6632.1987.tb33041.x. PMID: 3439726.
Article
4. Karino T, Goldsmith HL, Motomiya M, Mabuchi S, Sohara Y. 1987; Flow patterns in vessels of simple and complex geometries. Ann N Y Acad Sci. 516:422–41. https://doi.org/10.1111/j.1749-6632.1987.tb33063.x. DOI: 10.1111/j.1749-6632.1987.tb33063.x. PMID: 3439740.
Article
5. Kasemo B, Lausmaa J. Davies JE, editor. 1991. The biomaterial-tissue interface and its analogues in surface science and technology. Bone-bio material interface. University of Toronto Press;Toronto: p. 19–32. https://doi.org/10.3138/9781442671508-005. DOI: 10.3138/9781442671508-005. PMID: 1960574.
Article
6. Eliades G, Eliades T, Vavuranakis M. Eliades G, Eliades T, Brantley WA, Watts DC, editors. 2003. General aspects of biomaterial surface alterations following exposure to biologic fluids. Dental materials in vivo: aging and related phenomena. Quintessence Publishing Co.;Chicago: p. 3–22. https://www.quintessence-publishing.com/gbr/en/product/dental-materials-in-vivo-aging-and-related-phenomena. DOI: 10.1016/s0889-5406(03)00538-9.
7. Israelachvili J. 2011. Intermolecular and surface forces. 3rd ed. Academic Press;San Diego: p. 275–86. https://doi.org/10.1016/C2009-0-21560-1. DOI: 10.1016/C2009-0-21560-1.
Article
8. Brash JL. Missirlis YF, Lemm W, editors. 1991. Studies of protein adsorption relevant to blood compatible materials. Modern aspects of protein adsorption on biomaterials. Kluwer Academic Press;Dordrecht: p. 39–47. https://doi.org/10.1007/978-94-011-3752-2_5. DOI: 10.1007/978-94-011-3752-2_5.
Article
9. Andrade JD, Hlady V. 1987; Plasma protein adsorption: the big twelve. Ann N Y Acad Sci. 516:158–72. https://doi.org/10.1111/j.1749-6632.1987.tb33038.x. DOI: 10.1111/j.1749-6632.1987.tb33038.x. PMID: 3439723.
Article
10. Wood SR, Kirkham J, Marsh PD, Shore RC, Nattress B, Robinson C. 2000; Architecture of intact natural human plaque biofilms studied by confocal laser scanning microscopy. J Dent Res. 79:21–7. https://doi.org/10.1177/00220345000790010201. DOI: 10.1177/00220345000790010201. PMID: 10690656.
Article
11. Zinelis S, Polychronis G, Papadopoulos F, Kokkinos C, Economou A, Panayi N, et al. 2022; Mechanical and electrochemical characterization of 3D printed orthodontic metallic appliances after in vivo ageing. Dent Mater. 38:1721–7. https://doi.org/10.1016/j.dental.2022.09.002. DOI: 10.1016/j.dental.2022.09.002. PMID: 36123188.
Article
12. Papadopoulou AK, Cantele A, Polychronis G, Zinelis S, Eliades T. 2019; Changes in roughness and mechanical properties of Invisalign® appliances after one- and two-weeks use. Materials (Basel). 12:2406. https://doi.org/10.3390/ma12152406. DOI: 10.3390/ma12152406. PMID: 31357697. PMCID: PMC6696190. PMID: db94c46c52ee400fa864a2d4fd2053a5.
Article
13. Schätzle M, Zinelis S, Markic G, Eliades G, Eliades T. 2017; Structural, morphological, compositional, and mechanical changes of palatal implants after use: a retrieval analysis. Eur J Orthod. 39:579–85. https://doi.org/10.1093/ejo/cjx001. DOI: 10.1093/ejo/cjx001. PMID: 28199512.
14. Gugger J, Pandis N, Zinelis S, Patcas R, Eliades G, Eliades T. 2016; Retrieval analysis of lingual fixed retainer adhesives. Am J Orthod Dentofacial Orthop. 150:575–84. https://doi.org/10.1016/j.ajodo.2016.06.012. DOI: 10.1016/j.ajodo.2016.06.012. PMID: 27692414.
Article
15. Hersche S, Sifakakis I, Zinelis S, Eliades T. 2017; Elemental, microstructural, and mechanical characterization of high gold orthodontic brackets after intraoral aging. Biomed Tech (Berl). 62:97–102. https://doi.org/10.1515/bmt-2015-0205. DOI: 10.1515/bmt-2015-0205. PMID: 27049606.
Article
16. Soteriou D, Ntasi A, Papagiannoulis L, Eliades T, Zinelis S. 2014; Decomposition of Ag-based soldering alloys used in space maintainers after intra-oral exposure. A retrieval analysis study. Acta Odontol Scand. 72:130–8. https://doi.org/10.3109/00016357.2013.812745. DOI: 10.3109/00016357.2013.812745. PMID: 23822908.
Article
17. Eliades T, Zinelis S, Papadopoulos MA, Eliades G. 2009; Characterization of retrieved orthodontic miniscrew implants. Am J Orthod Dentofacial Orthop. 135:10.e1–7. discussion 10–1. https://doi.org/10.1016/j.ajodo.2008.06.019. DOI: 10.1016/j.ajodo.2008.06.019. PMID: 19121491.
18. Zinelis S, Eliades T, Dimitrakopoulos I, Silikas N, Eliades G. 2009; Surface characterization and force relaxation of retrieved silk sutures. J Biomed Mater Res B Appl Biomater. 89:551–7. https://doi.org/10.1002/jbm.b.31248. DOI: 10.1002/jbm.b.31248. PMID: 18985772.
Article
19. Schuster S, Eliades G, Zinelis S, Eliades T, Bradley TG. 2004; Structural conformation and leaching from in vitro aged and retrieved Invisalign appliances. Am J Orthod Dentofacial Orthop. 126:725–8. https://doi.org/10.1016/j.ajodo.2004.04.021. DOI: 10.1016/j.ajodo.2004.04.021. PMID: 15592222.
20. Eliades T, Papadopulos JS, Eliades G, Silikas N, Watts DC. 2003; Multi-technique characterization of retrieved bone cement from revised total hip arthroplasties. J Mater Sci Mater Med. 14:967–72. https://doi.org/10.1023/a:1026350616079. DOI: 10.1023/A:1026350616079. PMID: 15348509.
21. Eliades T, Athanasiou AE. 2002; In vivo aging of orthodontic alloys: implications for corrosion potential, nickel release, and biocompatibility. Angle Orthod. 72:222–37. https://pubmed.ncbi.nlm.nih.gov/12071606/.
22. Eliades T, Eliades G, Watts DC. 2001; Intraoral aging of the inner headgear component: a potential biocompatibility concern? Am J Orthod Dentofacial Orthop. 119:300–6. https://doi.org/10.1067/mod.2001.111402. DOI: 10.1067/mod.2001.111402. PMID: 11244424.
Article
23. Eliades T, Eliades G, Athanasiou AE, Bradley TG. 2000; Surface characterization of retrieved NiTi orthodontic archwires. Eur J Orthod. 22:317–26. https://doi.org/10.1093/ejo/22.3.317. DOI: 10.1093/ejo/22.3.317. PMID: 10920564.
Article
24. Eliades T, Eliades G, Watts DC. 1999; Structural conformation of in vitro and in vivo aged orthodontic elastomeric modules. Eur J Orthod. 21:649–58. https://doi.org/10.1093/ejo/21.6.649. DOI: 10.1093/ejo/21.6.649. PMID: 10665194.
Article
25. Magnissalis EA, Eliades G, Eliades T. 1999; Multitechnique characterization of articular surfaces of retrieved ultrahigh molecular weight polyethylene acetabular sockets. J Biomed Mater Res. 48:365–73. https://doi.org/10.1002/(sici)1097-4636(1999)48:3<365::aid-jbm22>3.0.co;2-t. DOI: 10.1002/(SICI)1097-4636(1999)48:3<365::AID-JBM22>3.0.CO;2-T.
Article
26. Vassilakos N. 1992. Some biophysical aspects of salivary film formation. Studies of salivary adsorption at solid/liquid and air/liquid interfaces [PhD dissertation]. Lund University;Lund: DOI: 10.1016/0003-9969(92)90137-W. PMID: 1332664.
27. Embery G, Hogg SD, Heaney TG, Stanbuty JB, Green RDJ. ten Cate JM, Leach SA, Arends J, editors. 1984. Some considerations on dental pellicle formation and early bacterial colonization: the role of high and low molecular weight proteins of the major and minor salivary glands. Bacterial adhesion and preventive dentistry. IRL Press;Oxford: p. 73–84.
28. Busscher HJ, van der Mei HC. 1997; Physico-chemical interactions in initial microbial adhesion and relevance for biofilm formation. Adv Dent Res. 11:24–32. https://doi.org/10.1177/08959374970110011301. DOI: 10.1177/08959374970110011301. PMID: 9524439.
Article
29. Christersson CE, Dunford RG, Glantz PO, Baier RE. 1989; Effect of critical surface tension on retention of oral microorganisms. Scand J Dent Res. 97:247–56. https://doi.org/10.1111/j.1600-0722.1989.tb01609.x. DOI: 10.1111/j.1600-0722.1989.tb01609.x. PMID: 2740836.
Article
30. Bowden GH, Li YH. 1997; Nutritional influences on biofilm development. Adv Dent Res. 11:81–99. https://doi.org/10.1177/08959374970110012101. DOI: 10.1177/08959374970110012101. PMID: 9524446.
31. Vasin SL, Rosanova IB, Sevastianov VI. 1998; The role of proteins in the nucleation and formation of calcium-containing deposits on biomaterial surfaces. J Biomed Mater Res. 39:491–7. https://doi.org/10.1002/(sici)1097-4636(19980305)39:3<491::aid-jbm21>3.0.co;2-c. DOI: 10.1002/(SICI)1097-4636(19980305)39:3<491::AID-JBM21>3.0.CO;2-C. PMID: 9468061.
Article
32. Quirynen M, Marechal M, Busscher HJ, Weerkamp AH, Darius PL, van Steenberghe D. 1990; The influence of surface free energy and surface roughness on early plaque formation. An in vivo study in man. J Clin Periodontol. 17:138–44. https://doi.org/10.1111/j.1600-051x.1990.tb01077.x. DOI: 10.1111/j.1600-051X.1990.tb01077.x. PMID: 2319000.
Article
33. Yamauchi M, Yamamoto K, Wakabayashi M, Kawano J. 1990; In vitro adherence of microorganisms to denture base resin with different surface texture. Dent Mater J. 9:19–24. https://doi.org/10.4012/dmj.9.19. DOI: 10.4012/dmj.9.19. PMID: 2098207.
34. Siegrist BE, Brecx MC, Gusberti FA, Joss A, Lang NP. 1991; In vivo early human dental plaque formation on different supporting substances. A scanning electron microscopic and bacteriological study. Clin Oral Implants Res. 2:38–46. https://doi.org/10.1034/j.1600-0501.1991.020105.x. DOI: 10.1034/j.1600-0501.1991.020105.x. PMID: 1807421.
Article
35. Hannig M. 1999; Transmission electron microscopy of early plaque formation on dental materials in vivo. Eur J Oral Sci. 107:55–64. https://doi.org/10.1046/j.0909-8836.1999.eos107109.x. DOI: 10.1046/j.0909-8836.1999.eos107109.x. PMID: 10102751.
Article
36. Yao Y, Grogan J, Zehnder M, Lendenmann U, Nam B, Wu Z, et al. 2001; Compositional analysis of human acquired enamel pellicle by mass spectrometry. Arch Oral Biol. 46:293–303. https://doi.org/10.1016/s0003-9969(00)00134-5. DOI: 10.1016/S0003-9969(00)00134-5. PMID: 11269863.
Article
37. Possart W, Zimmer B. 2024; Water in polyurethane networks: physical and chemical ageing effects and mechanical parameters. Contin Mech Thermodyn. 36:261–87. https://doi.org/10.1007/s00161-022-01082-y. DOI: 10.1007/s00161-022-01082-y.
Article
38. Kozakiewicz J, Rokicki G, Przybylski J, Sylwestrzak K, Parzuchowski PG, Tomczyk KM. 2010; Studies of the hydrolytic stability of poly(urethane-urea) elastomers synthesized from oligocarbonate diols. Polym Degrad Stab. 95:2413–20. https://doi.org/10.1016/j.polymdegradstab.2010.08.017. DOI: 10.1016/j.polymdegradstab.2010.08.017.
39. Arhant M, Le Gall M, Le Gac PY, Davies P. 2019; Impact of hydrolytic degradation on mechanical properties of PET- towards an understanding of microplastics formation. Polym Degrad Stab. 161:175–82. https://doi.org/10.1016/j.polymdegradstab.2019.01.021. DOI: 10.1016/j.polymdegradstab.2019.01.021.
Article
40. Shokati B, Tam LE, Santerre JP, Finer Y. 2010; Effect of salivary esterase on the integrity and fracture toughness of the dentin-resin interface. J Biomed Mater Res B Appl Biomater. 94:230–7. https://doi.org/10.1002/jbm.b.31645. DOI: 10.1002/jbm.b.31645. PMID: 20524199.
Article
41. Finer Y, Jaffer F, Santerre JP. 2004; Mutual influence of cholesterol esterase and pseudocholinesterase on the biodegradation of dental composites. Biomaterials. 25:1787–93. https://doi.org/10.1016/j.biomaterials.2003.08.029. DOI: 10.1016/j.biomaterials.2003.08.029. PMID: 14738842.
Article
42. Marashdeh MQ, Gitalis R, Levesque C, Finer Y. 2018; Enterococcus faecalis hydrolyzes dental resin composites and adhesives. J Endod. 44:609–13. https://doi.org/10.1016/j.joen.2017.12.014. DOI: 10.1016/j.joen.2017.12.014. PMID: 29397213. PMCID: PMC5869143.
Article
43. Bourbia M, Ma D, Cvitkovitch DG, Santerre JP, Finer Y. 2013; Cariogenic bacteria degrade dental resin composites and adhesives. J Dent Res. 92:989–94. https://doi.org/10.1177/0022034513504436. DOI: 10.1177/0022034513504436. PMID: 24026951. PMCID: PMC3797536.
Article
44. Nedeljkovic I, De Munck J, Ungureanu AA, Slomka V, Bartic C, Vananroye A, et al. 2017; Biofilm-induced changes to the composite surface. J Dent. 63:36–43. https://doi.org/10.1016/j.jdent.2017.05.015. DOI: 10.1016/j.jdent.2017.05.015. PMID: 28554609.
Article
45. Rios-Madrigal AM, Orea-Vega DC, Vega-González M, Espinosa-Cristóbal LF, Arenas-Arrocena MC, Castro-Ruiz JE, et al. 2021; Effect of Streptococcus mutans on surface-topography, microhardness, and mechanical properties of contemporary resin composites. J Appl Biomater Funct Mater. 19:22808000211065260. https://doi.org/10.1177/22808000211065260. DOI: 10.1177/22808000211065260. PMID: 34915756. PMID: 495821ad3ad346579b3fead6e9c57606.
46. Gitalis R, Zhou L, Marashdeh MQ, Sun C, Glogauer M, Finer Y. 2019; Human neutrophils degrade methacrylate resin composites and tooth dentin. Acta Biomater. 88:325–31. https://doi.org/10.1016/j.actbio.2019.02.033. DOI: 10.1016/j.actbio.2019.02.033. PMID: 30807874. PMCID: PMC6491217.
47. Ahmadieh S, Kim HW, Weintraub NL. 2020; Potential role of perivascular adipose tissue in modulating atherosclerosis. Clin Sci (Lond). 134:3–13. https://doi.org/10.1042/CS20190577. DOI: 10.1042/CS20190577. PMID: 31898749. PMCID: PMC6944729.
Article
48. Zhu X, Wang C, Duan X, Liang B, Genbo Xu E, Huang Z. 2023; Micro- and nanoplastics: a new cardiovascular risk factor? Environ Int. 171:107662. https://doi.org/10.1016/j.envint.2022.107662. DOI: 10.1016/j.envint.2022.107662. PMID: 36473237.
Article
49. Marfella R, Prattichizzo F, Sardu C, Fulgenzi G, Graciotti L, Spadoni T, et al. 2024; Microplastics and nanoplastics in atheromas and cardiovascular events. N Engl J Med. 390:900–10. https://doi.org/10.1056/NEJMoa2309822. DOI: 10.1056/NEJMoa2309822. PMID: 38446676.
Article
50. Quinzi V, Orilisi G, Vitiello F, Notarstefano V, Marzo G, Orsini G. 2023; A spectroscopic study on orthodontic aligners: first evidence of secondary microplastic detachment after seven days of artificial saliva exposure. Sci Total Environ. 866:161356. https://doi.org/10.1016/j.scitotenv.2022.161356. DOI: 10.1016/j.scitotenv.2022.161356. PMID: 36603638.
Full Text Links
  • KJOD
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr