Child Kidney Dis.  2024 Jun;28(2):59-65. 10.3339/ckd.24.011.

Management of hydronephrosis: a comprehensive review in pediatric urology perspective

Affiliations
  • 1Department of Urology, Urological Science Institute, Yonsei University College of Medicine, Seoul, Repulic of Korea

Abstract

Hydronephrosis, characterized by dilation of the renal pelvis and calyces due to urine flow obstruction, poses a significant clinical challenge. Although often asymptomatic and capable of spontaneous resolution, surgical intervention is necessary for specific scenarios such as febrile urinary tract infections, deteriorating hydronephrosis, or declining renal function. The efficacy of continuous antibiotic prophylaxis in preventing urinary tract infections remains controversial. Yet, it may benefit high-risk patients, emphasizing the importance of individualized patient selection, as surgical treatment methods for patients with hydronephrosis have become less invasive than in previous decades. However, long-term follow-up outcomes are lacking, necessitating further clarification. This review presents an overview of the etiology, natural progression, and modern management of hydronephrosis, encompassing advancements in minimally invasive procedures.

Keyword

Child; Hydronephrosis; Ureteral obstruction

Reference

References

1. Nguyen HT, Herndon CD, Cooper C, Gatti J, Kirsch A, Kokorowski P, et al. The Society for Fetal Urology consensus statement on the evaluation and management of antenatal hydronephrosis. J Pediatr Urol. 2010; 6:212–31.
Article
2. Woodward M, Frank D. Postnatal management of antenatal hydronephrosis. BJU Int. 2002; 89:149–56.
Article
3. Knerr I, Dittrich K, Miller J, Kummer W, Rosch W, Weidner W, et al. Alteration of neuronal and endothelial nitric oxide synthase and neuropeptide Y in congenital ureteropelvic junction obstruction. Urol Res. 2001; 29:134–40.
Article
4. Apoznanski W, Koleda P, Wozniak Z, Rusiecki L, Szydelko T, Kalka D, et al. The distribution of interstitial cells of Cajal in congenital ureteropelvic junction obstruction. Int Urol Nephrol. 2013; 45:607–12.
Article
5. Zeltser IS, Liu JB, Bagley DH. The incidence of crossing vessels in patients with normal ureteropelvic junction examined with endoluminal ultrasound. J Urol. 2004; 172(6 Pt 1):2304–7.
Article
6. Boylu U, Oommen M, Lee BR, Thomas R. Ureteropelvic junction obstruction secondary to crossing vessels-to transpose or not? The robotic experience. J Urol. 2009; 181:1751–5.
Article
7. Richstone L, Seideman CA, Reggio E, Bluebond-Langner R, Pinto PA, Trock B, et al. Pathologic findings in patients with ureteropelvic junction obstruction and crossing vessels. Urology. 2009; 73:716–9.
Article
8. Ellerkamp V, Kurth RR, Schmid E, Zundel S, Warmann SW, Fuchs J. Differences between intrinsic and extrinsic ureteropelvic junction obstruction related to crossing vessels: histology and functional analyses. World J Urol. 2016; 34:577–83.
Article
9. Lallas CD, Pak RW, Pagnani C, Hubosky SG, Yanke BV, Keeley FX, et al. The minimally invasive management of ureteropelvic junction obstruction in horseshoe kidneys. World J Urol. 2011; 29:91–5.
Article
10. Adey GS, Vargas SO, Retik AB, Borer JG, Mandell J, Hendren WH, et al. Fibroepithelial polyps causing ureteropelvic junction obstruction in children. J Urol. 2003; 169:1834–6.
Article
11. Friedrich U, Schreiber D, Gottschalk E, Dietz W. Ultrastructure of the distal ureter in congenital malformations in childhood. Z Kinderchir. 1987; 42:94–102.
12. Hanna MK, Jeffs RD, Sturgess JM, Barkin M. Ureteral structure and ultrastructure. Part II. Congenital ureteropelvic junction obstruction and primary obstructive megaureter. J Urol. 1976; 116:725–30.
Article
13. Hanna MK, Jeffs RD, Sturgess JM, Barkin M. Ureteral structure and ultrastructure. Part III. The congenitally dilated ureter (megaureter). J Urol. 1977; 117:24–7.
Article
14. Lee BR, Silver RI, Partin AW, Epstein JI, Gearhart JP. A quantitative histologic analysis of collagen subtypes: the primary obstructed and refluxing megaureter of childhood. Urology. 1998; 51:820–3.
Article
15. MacKinnon KJ. Primary megaureter. Birth Defects Orig Artic Ser. 1977; 13:15–6.
16. Mackinnon KJ, Foote JW, Wiglesworth FW, Blennerhassett JB. The pathology of the adynamic distal ureteral segment. J Urol. 1970; 103:134–7.
Article
17. Dixon JS, Jen PY, Yeung CK, Gosling JA. The vesico-ureteric junction in three cases of primary obstructive megaureter associated with ectopic ureteric insertion. Br J Urol. 1998; 81:580–4.
18. Gosling JA, Dixon JS. Functional obstruction of the ureter and renal pelvis: a histological and electron microscopic study. Br J Urol. 1978; 50:145–52.
Article
19. Wilcox D, Mouriquand P. Management of megaureter in children. Eur Urol. 1998; 34:73–8.
Article
20. Shokeir AA, Nijman RJ. Primary megaureter: current trends in diagnosis and treatment. BJU Int. 2000; 86:861–8.
Article
21. Manzoni C. Megaureter. Rays. 2002; 27:83–5.
22. Davenport MT, Merguerian PA, Koyle M. Antenatally diagnosed hydronephrosis: current postnatal management. Pediatr Surg Int. 2013; 29:207–14.
Article
23. Sidhu G, Beyene J, Rosenblum ND. Outcome of isolated antenatal hydronephrosis: a systematic review and meta-analysis. Pediatr Nephrol. 2006; 21:218–24.
Article
24. Jung J, Lee JH, Kim KS, Park YS. Utility of Society for Fetal Urology and anteroposterior pelvic diameter grading systems for estimating time to resolution of isolated hydronephrosis: a single center study. J Urol. 2020; 204:1048–53.
Article
25. Thomas DF. Prenatal diagnosis: what do we know of long-term outcomes? J Pediatr Urol. 2010; 6:204–11.
Article
26. Elmaci AM, Donmez MI. Time to resolution of isolated antenatal hydronephrosis with anteroposterior diameter ≤ 20 mm. Eur J Pediatr. 2019; 178:823–8.
Article
27. Braga LH, D’Cruz J, Rickard M, Jegatheeswaran K, Lorenzo AJ. The fate of primary nonrefluxing megaureter: a prospective outcome analysis of the rate of urinary tract infections, surgical indications and time to resolution. J Urol. 2016; 195(4 Pt 2):1300–5.
Article
28. Dekirmendjian A, Braga LH. Primary non-refluxing megaureter: analysis of risk factors for spontaneous resolution and surgical intervention. Front Pediatr. 2019; 7:126.
Article
29. Baskin LS, Zderic SA, Snyder HM, Duckett JW. Primary dilated megaureter: long-term followup. J Urol. 1994; 152(2 Pt 2):618–21.
Article
30. Keating MA, Escala J, Snyder HM 3rd, Heyman S, Duckett JW. Changing concepts in management of primary obstructive megaureter. J Urol. 1989; 142(2 Pt 2):636–40.
Article
31. Liu HY, Dhillon HK, Yeung CK, Diamond DA, Duffy PG, Ransley PG. Clinical outcome and management of prenatally diagnosed primary megaureters. J Urol. 1994; 152(2 Pt 2):614–7.
Article
32. Shukla AR, Cooper J, Patel RP, Carr MC, Canning DA, Zderic SA, et al. Prenatally detected primary megaureter: a role for extended followup. J Urol. 2005; 173:1353–6.
Article
33. Braga LH, Farrokhyar F, D’Cruz J, Pemberton J, Lorenzo AJ. Risk factors for febrile urinary tract infection in children with prenatal hydronephrosis: a prospective study. J Urol. 2015; 193(5 Suppl):1766–71.
Article
34. Braga LH, Pemberton J, Heaman J, DeMaria J, Lorenzo AJ. Pilot randomized, placebo controlled trial to investigate the effect of antibiotic prophylaxis on the rate of urinary tract infection in infants with prenatal hydronephrosis. J Urol. 2014; 191(5 Suppl):1501–7.
Article
35. Silay MS, Undre S, Nambiar AK, Dogan HS, Kocvara R, Nijman RJ, et al. Role of antibiotic prophylaxis in antenatal hydronephrosis: a systematic review from the European Association of Urology/European Society for Paediatric Urology Guidelines Panel. J Pediatr Urol. 2017; 13:306–15.
Article
36. Riedmiller H, Androulakakis P, Beurton D, Kocvara R, Gerharz E; European Association of Urology. EAU guidelines on paediatric urology. Eur Urol. 2001; 40:589–99.
37. Rivetti G, Marzuillo P, Guarino S, Di Sessa A, La Manna A, Caldamone AA, et al. Primary non-refluxing megaureter: natural history, follow-up and treatment. Eur J Pediatr. 2024; 183:2029–36.
Article
38. Ramsay JW, Miller RA, Kellett MJ, Blackford HN, Wickham JE, Whitfield HN. Percutaneous pyelolysis: indications, complications and results. Br J Urol. 1984; 56:586–8.
Article
39. Davis DM, Strong GH, Drake WM. Intubated ureterotomy; experimental work and clinical results. J Urol. 1948; 59:851–62.
Article
40. Manikandan R, Saad A, Bhatt RI, Neilson D. Minimally invasive surgery for pelviureteral junction obstruction in adults: a critical review of the options. Urology. 2005; 65:422–32.
Article
41. Lam JS, Cooper KL, Greene TD, Gupta M. Impact of hydronephrosis and renal function on treatment outcome: antegrade versus retrograde endopyelotomy. Urology. 2003; 61:1107–12.
Article
42. Corbett HJ, Mullassery D. Outcomes of endopyelotomy for pelviureteric junction obstruction in the paediatric population: a systematic review. J Pediatr Urol. 2015; 11:328–36.
Article
43. Szydelko T, Kasprzak J, Apoznanski W, Kolodziej A, Zdrojowy R, Dembowski J, et al. Comparison of dismembered and nondismembered Y-V laparoscopic pyeloplasty in patients with primary hydronephrosis. J Laparoendosc Adv Surg Tech A. 2010; 20:7–12.
Article
44. Szydelko T, Kasprzak J, Lewandowski J, Apoznanski W, Dembowski J. Dismembered laparoscopic Anderson-Hynes pyeloplasty versus nondismembered laparoscopic Y-V pyeloplasty in the treatment of patients with primary ureteropelvic junction obstruction: a prospective study. J Endourol. 2012; 26:1165–70.
Article
45. Schuessler WW, Grune MT, Tecuanhuey LV, Preminger GM. Laparoscopic dismembered pyeloplasty. J Urol. 1993; 150:1795–9.
Article
46. Kavoussi LR, Peters CA. Laparoscopic pyeloplasty. J Urol. 1993; 150:1891–4.
Article
47. Autorino R, Eden C, El-Ghoneimi A, Guazzoni G, Buffi N, Peters CA, et al. Robot-assisted and laparoscopic repair of ureteropelvic junction obstruction: a systematic review and meta-analysis. Eur Urol. 2014; 65:430–52.
Article
48. Metzelder ML, Schier F, Petersen C, Truss M, Ure BM. Laparoscopic transabdominal pyeloplasty in children is feasible irrespective of age. J Urol. 2006; 175:688–91.
Article
49. Pini G, Goezen AS, Schulze M, Hruza M, Klein J, Rassweiler JJ. Small-incision access retroperitoneoscopic technique (SMART) pyeloplasty in adult patients: comparison of cosmetic and post-operative pain outcomes in a matched-pair analysis with standard retroperitoneoscopy: preliminary report. World J Urol. 2012; 30:605–11.
Article
50. Lima M, Ruggeri G, Messina P, Tursini S, Destro F, Mogiatti M. One-trocar-assisted pyeloplasty in children: an 8-year single institution experience. Eur J Pediatr Surg. 2015; 25:262–8.
Article
51. Braga LH, Pace K, DeMaria J, Lorenzo AJ. Systematic review and meta-analysis of robotic-assisted versus conventional laparoscopic pyeloplasty for patients with ureteropelvic junction obstruction: effect on operative time, length of hospital stay, postoperative complications, and success rate. Eur Urol. 2009; 56:848–57.
Article
52. Chang SJ, Hsu CK, Hsieh CH, Yang SS. Comparing the efficacy and safety between robotic-assisted versus open pyeloplasty in children: a systemic review and meta-analysis. World J Urol. 2015; 33:1855–65.
Article
53. Kang SK, Jang WS, Kim SH, Kim SW, Han SW, Lee YS. Comparison of intraoperative and short-term postoperative outcomes between robot-assisted laparoscopic multi-port pyeloplasty using the da Vinci Si system and single-port pyeloplasty using the da Vinci SP system in children. Investig Clin Urol. 2021; 62:592–9.
Article
54. Peters CA, Mandell J, Lebowitz RL, Colodny AH, Bauer SB, Hendren WH, et al. Congenital obstructed megaureters in early infancy: diagnosis and treatment. J Urol. 1989; 142(2 Pt 2):641–5.
Article
55. Kim SW, Lim NL, Lee YS, Han SW, Im YJ. Laparoscopic intravesical detrusorrhaphy with ureteral plication for megaureter: a novel technique. Urology. 2015; 86:187–91.
Article
56. He R, Yu W, Li X, Yao L, He Z, Zhou L. Laparoscopic ureteral reimplantation with extracorporeal tailoring and direct nipple ureteroneocystostomy for adult obstructed megaureter: a novel technique. Urology. 2013; 82:1171–4.
Article
57. He Y, Chen X, Chen Z, Luo YC, Li NN. Treatment of symptomatic primary obstructive megaureter by laparoscopic intracorporeal or extracorporeal ureteral tapering and ureteroneocystostomy: experience on 11 patients. J Endourol. 2012; 26:1454–7.
Article
58. Fu W, Zhang X, Zhang X, Zhang P, Gao J, Dong J, et al. Pure laparoscopic and robot-assisted laparoscopic reconstructive surgery in congenital megaureter: a single institution experience. PLoS One. 2014; 9:e99777.
Article
59. Perdzynski W, Kalicinski ZH. Long-term results after megaureter folding in children. J Pediatr Surg. 1996; 31:1211–7.
Article
60. Farrugia MK, Hitchcock R, Radford A, Burki T, Robb A, Murphy F, et al. British Association of Paediatric Urologists consensus statement on the management of the primary obstructive megaureter. J Pediatr Urol. 2014; 10:26–33.
Article
61. Lee SD, Akbal C, Kaefer M. Refluxing ureteral reimplant as temporary treatment of obstructive megaureter in neonate and infant. J Urol. 2005; 173:1357–60.
Article
62. Kassite I, Renaux Petel M, Chaussy Y, Eyssartier E, Alzahrani K, Sczwarc C, et al. High pressure balloon dilatation of primary obstructive megaureter in children: a multicenter study. Front Pediatr. 2018; 6:329.
Article
63. Angulo JM, Arteaga R, Rodriguez Alarcon J, Calvo MJ. Role of retrograde endoscopic dilatation with balloon and derivation using double pig-tail catheter as an initial treatment for vesico-ureteral junction stenosis in children. Cir Pediatr. 1998; 11:15–8.
64. Romero RM, Angulo JM, Parente A, Rivas S, Tardaguila AR. Primary obstructive megaureter: the role of high pressure balloon dilation. J Endourol. 2014; 28:517–23.
Article
65. Skott M, Gnech M, Hoen LA, Kennedy U, Van Uitert A, Zachou A, et al. Endoscopic dilatation/incision of primary obstructive megaureter: a systematic review. On behalf of the EAU paediatric urology guidelines panel. J Pediatr Urol. 2024; 20:47–56.
Article
Full Text Links
  • CKD
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr