2. Brun P, Scorzeto M, Vassanelli S, Castagliuolo I, Palù G, Ghezzo F, Messina GM, Iucci G, Battaglia V, Sivolella S, Bagno A, Polzonetti G, Marletta G, Dettin M. 2013; Mechanisms underlying the attachment and spreading of human osteoblasts: from transient interactions to focal adhesions on vitronectin-grafted bioactive surfaces. Acta Biomater. 9:6105–15. DOI:
10.1016/j.actbio.2012.12.018. PMID:
23261922.
Article
6. Hayman EG, Pierschbacher MD, Ohgren Y, Ruoslahti E. 1983; Serum spreading factor (vitronectin) is present at the cell surface and in tissues. Proc Natl Acad Sci U S A. 80:4003–7. DOI:
10.1073/pnas.80.13.4003. PMID:
6191326. PMCID:
PMC394188.
Article
8. Min SK, Kang HK, Jung SY, Jang DH, Min BM. 2018; A vitronectin-derived peptide reverses ovariectomy-induced bone loss via regulation of osteoblast and osteoclast differentiation. Cell Death Differ. 25:268–81. DOI:
10.1038/cdd.2017.153. PMID:
28937683. PMCID:
PMC5762842.
Article
9. Lee J, Min HK, Park CY, Kang HK, Jung SY, Min BM. 2022; A vitronectin-derived peptide prevents and restores alveolar bone loss by modulating bone re-modelling and expression of RANKL and IL-17A. J Clin Periodontol. 49:799–813. DOI:
10.1111/jcpe.13671. PMID:
35634689.
Article
10. Date K, Sakagami H, Yura K. 2021; Regulatory properties of vitronectin and its glycosylation in collagen fibril formation and collagen-degrading enzyme cathepsin K activity. Sci Rep. 11:12023. DOI:
10.1038/s41598-021-91353-6. PMID:
34103584. PMCID:
PMC8187593.
Article
12. Dutra SGV, Felix ACS, Gastaldi AC, De Paula Facioli T, Vieira S, De Souza HCD. 2017; Chronic treatment with angiotensin-converting enzyme inhibitor increases cardiac fibrosis in young rats submitted to early ovarian failure. Auton Neurosci. 206:28–34. DOI:
10.1016/j.autneu.2017.07.001. PMID:
28712539.
Article
13. Ikegami H, Kawawa R, Ichi I, Ishikawa T, Koike T, Aoki Y, Fujiwara Y. 2017; Excessive vitamin E intake does not cause bone loss in male or ovariectomized female mice fed normal or high-fat diets. J Nutr. 147:1932–7. DOI:
10.3945/jn.117.248575. PMID:
28835390.
Article
14. Li X, Udagawa N, Itoh K, Suda K, Murase Y, Nishihara T, Suda T, Takahashi N. 2002; p38 MAPK-mediated signals are required for inducing osteoclast differentiation but not for osteoclast function. Endocrinology. 143:3105–13. DOI:
10.1210/endo.143.8.8954. PMID:
12130576.
Article
17. Lee SH, Kim JN, Shin KJ, Koh KS, Song WC. 2020; Three-dimensional microstructures of the intracortical canals in the animal model of osteoporosis. Anat Cell Biol. 53:162–8. DOI:
10.5115/acb.19.189. PMID:
32647084. PMCID:
PMC7343558.
Article
20. Takeshita S, Kaji K, Kudo A. 2000; Identification and characterization of the new osteoclast progenitor with macrophage phenotypes being able to differentiate into mature osteoclasts. J Bone Miner Res. 15:1477–88. DOI:
10.1359/jbmr.2000.15.8.1477. PMID:
10934646.
Article
21. Tsurukai T, Udagawa N, Matsuzaki K, Takahashi N, Suda T. 2000; Roles of macrophage-colony stimulating factor and osteoclast differentiation factor in osteoclastogenesis. J Bone Miner Metab. 18:177–84. DOI:
10.1007/s007740070018. PMID:
10874596.
Article
22. Jung SY, Min BM. 2022; A vitronectin-derived dimeric peptide suppresses osteoclastogenesis by binding to c-Fms and inhibiting M-CSF signaling. Exp Cell Res. 418:113252. DOI:
10.1016/j.yexcr.2022.113252. PMID:
35697077.
Article
23. Kang HK, Park CY, Jung SY, Jo SB, Min BM. 2022; A vitronectin-derived peptide restores ovariectomy-induced bone loss by dual regulation of bone remodeling. Tissue Eng Regen Med. 19:1359–76. DOI:
10.1007/s13770-022-00486-w. PMID:
36207661. PMCID:
PMC9679078.
Article
24. Gramoun A, Azizi N, Sodek J, Heersche JN, Nakchbandi I, Manolson MF. 2010; Fibronectin inhibits osteoclastogenesis while enhancing osteoclast activity via nitric oxide and interleukin-1β-mediated signaling pathways. J Cell Biochem. 111:1020–34. DOI:
10.1002/jcb.22791. PMID:
20672308.
Article
25. Geblinger D, Addadi L, Geiger B. 2010; Nano-topography sensing by osteoclasts. J Cell Sci. 123(Pt 9):1503–10. Erratum in: J Cell Sci 2010;123:1814. DOI:
10.1242/jcs.060954. PMID:
20375065. PMCID:
PMC2858020.
Article
26. Mc Donnell P, Harrison N, Liebschner MA, Mc Hugh PE. 2009; Simulation of vertebral trabecular bone loss using voxel finite element analysis. J Biomech. 42:2789–96. DOI:
10.1016/j.jbiomech.2009.07.038. PMID:
19782987.
Article
29. Sanjay A, Houghton A, Neff L, DiDomenico E, Bardelay C, Antoine E, Levy J, Gailit J, Bowtell D, Horne WC, Baron R. 2001; Cbl associates with Pyk2 and Src to regulate Src kinase activity, alpha(v)beta(3) integrin-mediated signaling, cell adhesion, and osteoclast motility. J Cell Biol. 152:181–95. DOI:
10.1083/jcb.152.1.181. PMID:
11149930. PMCID:
PMC2193648.
30. Lakkakorpi PT, Horton MA, Helfrich MH, Karhukorpi EK, Väänänen HK. 1991; Vitronectin receptor has a role in bone resorption but does not mediate tight sealing zone attachment of osteoclasts to the bone surface. J Cell Biol. 115:1179–86. DOI:
10.1083/jcb.115.4.1179. PMID:
1720122. PMCID:
PMC2289948.
Article
31. Burgess TL, Qian Y, Kaufman S, Ring BD, Van G, Capparelli C, Kelley M, Hsu H, Boyle WJ, Dunstan CR, Hu S, Lacey DL. 1999; The ligand for osteoprotegerin (OPGL) directly activates mature osteoclasts. J Cell Biol. 145:527–38. DOI:
10.1083/jcb.145.3.527. PMID:
10225954. PMCID:
PMC2185088.
Article
34. Davies J, Warwick J, Totty N, Philp R, Helfrich M, Horton M. 1989; The osteoclast functional antigen, implicated in the regulation of bone resorption, is biochemically related to the vitronectin receptor. J Cell Biol. 109(4 Pt 1):1817–26. DOI:
10.1083/jcb.109.4.1817. PMID:
2477382. PMCID:
PMC2115816.
Article
35. Nesbitt S, Nesbit A, Helfrich M, Horton M. 1993; Biochemical characterization of human osteoclast integrins. Osteoclasts express alpha v beta 3, alpha 2 beta 1, and alpha v beta 1 integrins. J Biol Chem. 268:16737–45. DOI:
10.1016/S0021-9258(19)85479-0. PMID:
8344953.
Article