1. Amin MB, Edge SB, Greene FL, Byrd DR, Brookland RK, Washington MK, et al. AJCC cancer staging manual 8th ed. Springer;8th ed. 2017.
2. Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, et al. 2016; 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid. 26(1):1–133. DOI:
10.1089/thy.2015.0020. PMID:
26462967. PMCID:
PMC4739132.
Article
3. Yin DT, Yu K, Lu RQ, Li X, Xu J, Lei M, et al. 2016; Clinicopathological significance of TERT promoter mutation in papillary thyroid carcinomas: a systematic review and meta-analysis. Clin Endocrinol (Oxf). 85(2):299–305. DOI:
10.1111/cen.13017. PMID:
26732020.
Article
4. Yang J, Gong Y, Yan S, Chen H, Qin S, Gong R. 2020; Association between TERT promoter mutations and clinical behaviors in differentiated thyroid carcinoma: a systematic review and meta-analysis. Endocrine. 67(1):44–57. DOI:
10.1007/s12020-019-02117-2. PMID:
31655978. PMCID:
PMC6969012.
Article
5. Zhao L, Wang L, Jia X, Hu X, Pang P, Zhao S, et al. 2020; The coexistence of genetic mutations in thyroid carcinoma predicts histopathological factors associated with a poor prognosis: a systematic review and network meta-analysis. Front Oncol. 10:540238. DOI:
10.3389/fonc.2020.540238. PMID:
33240806. PMCID:
PMC7682272.
Article
6. Park H, Heo J, Ki CS, Shin JH, Oh YL, Son YI, et al. 2023; Selection criteria for completion thyroidectomy in follicular thyroid carcinoma using primary tumor size and TERT promoter mutational status. Ann Surg Oncol. 30(5):2916–25. DOI:
10.1245/s10434-022-13089-5. PMID:
36637642. PMCID:
PMC9838536.
Article
7. Yi KH, Lee EK, Kang HC, Koh Y, Kim SW, Kim IJ, et al. 2016; 2016 revised Korean Thyroid Association management guidelines for patients with thyroid nodules and thyroid cancer. Int J Thyroidol. 9:59–126. DOI:
10.11106/ijt.2016.9.2.59.
Article
8. Filetti S, Durante C, Hartl D, Leboulleux S, Locati LD, Newbold K, et al. 2019; Thyroid cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 30(12):1856–83. DOI:
10.1093/annonc/mdz400. PMID:
31549998.
Article
9. Elisei R, Viola D, Torregrossa L, Giannini R, Romei C, Ugolini C, et al. 2012; The BRAF(V600E) mutation is an independent, poor prognostic factor for the outcome of patients with low-risk intrathyroid papillary thyroid carcinoma: single-institution results from a large cohort study. J Clin Endocrinol Metab. 97(12):4390–8. DOI:
10.1210/jc.2012-1775. PMID:
23066120.
10. Ito Y, Kudo T, Kihara M, Takamura Y, Kobayashi K, Miya A, et al. 2012; Prognosis of low-risk papillary thyroid carcinoma patients: its relationship with the size of primary tumors. Endocr J. 59(2):119–25. DOI:
10.1507/endocrj.EJ11-0288. PMID:
22068114.
Article
11. Ji YB, Song CM, Kim D, Sung ES, Lee DW, Chung MS, et al. 2019; Efficacy of hemithyroidectomy in papillary thyroid carcinoma with minimal extrathyroidal extension. Eur Arch Otorhinolaryngol. 276(12):3435–42. DOI:
10.1007/s00405-019-05598-z. PMID:
31414221.
Article
12. Kim SK, Park I, Woo JW, Lee JH, Choe JH, Kim JH, et al. 2017; Total thyroidectomy versus lobectomy in conventional papillary thyroid microcarcinoma: analysis of 8,676 patients at a single institution. Surgery. 161(2):485–92. DOI:
10.1016/j.surg.2016.07.037. PMID:
27593085.
Article
13. Kim H, Kim K, Bae JS, Kim JS. 2022; Clinical assessment of T2 papillary thyroid carcinoma: a retrospective study conducted at a single tertiary institution. Sci Rep. 12(1):13548. DOI:
10.1038/s41598-022-17979-2. PMID:
35941209. PMCID:
PMC9360027.
Article
14. Shin CH, Roh JL, Song DE, Cho KJ, Choi SH, Nam SY, et al. 2020; Prognostic value of tumor size and minimal extrathyroidal extension in papillary thyroid carcinoma. Am J Surg. 220(4):925–31. DOI:
10.1016/j.amjsurg.2020.02.020. PMID:
32081409.
Article
15. Tam S, Boonsripitayanon M, Amit M, Fellman BM, Li Y, Busaidy NL, et al. 2018; Survival in differentiated thyroid cancer: comparing the AJCC cancer staging seventh and eighth editions. Thyroid. 28(10):1301–10. DOI:
10.1089/thy.2017.0572. PMID:
30141373.
Article
16. Kim TH, Kim YN, Kim HI, Park SY, Choe JH, Kim JH, et al. 2017; Prognostic value of the eighth edition AJCC TNM classification for differentiated thyroid carcinoma. Oral Oncol. 71:81–6. DOI:
10.1016/j.oraloncology.2017.06.004. PMID:
28688696.
Article
17. Song E, Lee YM, Oh HS, Jeon MJ, Song DE, Kim TY, et al. 2019; A relook at the T stage of differentiated thyroid carcinoma with a focus on gross extrathyroidal extension. Thyroid. 29(2):202–8. DOI:
10.1089/thy.2018.0300. PMID:
30358515.
Article
18. Ganly I, Wang L, Tuttle RM, Katabi N, Ceballos GA, Harach HR, et al. 2015; Invasion rather than nuclear features correlates with outcome in encapsulated follicular tumors: further evidence for the reclassification of the encapsulated papillary thyroid carcinoma follicular variant. Hum Pathol. 46(5):657–64. DOI:
10.1016/j.humpath.2015.01.010. PMID:
25721865. PMCID:
PMC4981329.
Article
19. Vivero M, Kraft S, Barletta JA. 2013; Risk stratification of follicular variant of papillary thyroid carcinoma. Thyroid. 23(3):273–9. DOI:
10.1089/thy.2012.0369. PMID:
23025507.
Article
20. Ghossein R, Ganly I, Tuttle RM, Xu B. 2023; Large (>4 cm) intrathyroidal encapsulated well-differentiated follicular cell-derived carcinoma without vascular invasion may have negligible risk of recurrence even when treated with lobectomy alone. Thyroid. 33(5):586–92. DOI:
10.1089/thy.2023.0032. PMID:
36884299. PMCID:
PMC10171951.
Article
21. Liu J, Singh B, Tallini G, Carlson DL, Katabi N, Shaha A, et al. 2006; Follicular variant of papillary thyroid carcinoma: a clinicopathologic study of a problematic entity. Cancer. 107(6):1255–64. DOI:
10.1002/cncr.22138. PMID:
16900519.
22. Baloch ZW, Shafique K, Flanagan M, Livolsi VA. 2010; Encapsulated classic and follicular variants of papillary thyroid carcinoma: comparative clinicopathologic study. Endocr Pract. 16(6):952–9. DOI:
10.4158/EP10060.OR. PMID:
20497934.
Article
23. Yamazaki H, Sugino K, Katoh R, Matsuzu K, Masaki C, Akaishi J, et al. 2021; Outcomes for minimally invasive follicular thyroid carcinoma in relation to the change in age stratification in the AJCC 8th edition. Ann Surg Oncol. 28(7):3576–83. DOI:
10.1245/s10434-020-09397-3. PMID:
33237449.
Article
24. Ito Y, Hirokawa M, Masuoka H, Yabuta T, Kihara M, Higashiyama T, et al. 2013; Prognostic factors of minimally invasive follicular thyroid carcinoma: extensive vascular invasion significantly affects patient prognosis. Endocr J. 60(5):637–42. DOI:
10.1507/endocrj.EJ12-0419. PMID:
23327839.
Article
25. Stenson G, Nilsson IL, Mu N, Larsson C, Lundgren CI, Juhlin CC, et al. 2016; Minimally invasive follicular thyroid carcinomas: prognostic factors. Endocrine. 53(2):505–11. DOI:
10.1007/s12020-016-0876-y. PMID:
26858184. PMCID:
PMC4949299.
Article
26. Asari R, Koperek O, Scheuba C, Riss P, Kaserer K, Hoffmann M, et al. 2009; Follicular thyroid carcinoma in an iodine- replete endemic goiter region: a prospectively collected, retrospectively analyzed clinical trial. Ann Surg. 249(6):1023–31. DOI:
10.1097/SLA.0b013e3181a77b7b. PMID:
19474675.
27. Baloch ZW, Asa SL, Barletta JA, Ghossein RA, Juhlin CC, Jung CK, et al. 2022; Overview of the 2022 WHO classification of thyroid neoplasms. Endocr Pathol. 33(1):27–63. DOI:
10.1007/s12022-022-09707-3. PMID:
35288841.
Article
28. Ibrahimpasic T, Ghossein R, Shah JP, Ganly I. 2019; Poorly differentiated carcinoma of the thyroid gland: current status and future prospects. Thyroid. 29(3):311–21. DOI:
10.1089/thy.2018.0509. PMID:
30747050. PMCID:
PMC6437626.
Article
29. Ibrahimpasic T, Ghossein R, Carlson DL, Nixon I, Palmer FL, Shaha AR, et al. 2014; Outcomes in patients with poorly differentiated thyroid carcinoma. J Clin Endocrinol Metab. 99(4):1245–52. DOI:
10.1210/jc.2013-3842. PMID:
24512493.
Article
30. Lee DY, Won JK, Lee SH, Park DJ, Jung KC, Sung MW, et al. 2016; Changes of clinicopathologic characteristics and survival outcomes of anaplastic and poorly differentiated thyroid carcinoma. Thyroid. 26(3):404–13. DOI:
10.1089/thy.2015.0316. PMID:
26541309.
Article
31. Hescot S, Al Ghuzlan A, Henry T, Sheikh-Alard H, Lamartina L, Borget I, et al. 2022; Prognostic of recurrence and survival in poorly differentiated thyroid cancer. Endocr Relat Cancer. 29(11):625–34. DOI:
10.1530/ERC-22-0151. PMID:
36040800.
Article
32. Xu B, David J, Dogan S, Landa I, Katabi N, Saliba M, et al. 2022; Primary high-grade non-anaplastic thyroid carcinoma: a retrospective study of 364 cases. Histopathology. 80(2):322–37. DOI:
10.1111/his.14550. PMID:
34449926. PMCID:
PMC9425734.
Article
33. Dinets A, Gorobeiko M, Hoperia V, Lovin A, Tarasenko S. 2023; Papillary thyroid carcinoma coexisting with benign thyroid and parathyroid pathology: clinical and pathomorphological features. Int J Endocrinol (Ukraine). 19(4):274–8. DOI:
10.22141/2224-0721.19.4.2023.1285.
Article
34. Tong J, Ruan M, Jin Y, Fu H, Cheng L, Luo Q, et al. 2022; Poorly differentiated thyroid carcinoma: a clinician's perspective. Eur Thyroid J. 11(2):e220021. DOI:
10.1530/ETJ-22-0021. PMID:
35195082. PMCID:
PMC9010806.
Article
35. Wong KS, Lorch JH, Alexander EK, Marqusee E, Cho NL, Nehs MA, et al. 2019; Prognostic significance of extent of invasion in poorly differentiated thyroid carcinoma. Thyroid. 29(9):1255–61. DOI:
10.1089/thy.2019.0263. PMID:
31397224.
Article
36. Wong KS, Dong F, Telatar M, Lorch JH, Alexander EK, Marqusee E, et al. 2021; Papillary thyroid carcinoma with high- grade features versus poorly differentiated thyroid carcinoma: an analysis of clinicopathologic and molecular features and outcome. Thyroid. 31(6):933–40. DOI:
10.1089/thy.2020.0668. PMID:
33143568.
Article
38. Gallardo E, Medina J, Sanchez JC, Viudez A, Grande E, Porras I, et al. 2020; SEOM clinical guideline thyroid cancer (2019). Clin Transl Oncol. 22(2):223–35. DOI:
10.1007/s12094-019-02284-8. PMID:
32006340.
Article
39. Coca-Pelaz A, Shah JP, Hernandez-Prera JC, Ghossein RA, Rodrigo JP, Hartl DM, et al. 2020; Papillary thyroid cancer- aggressive variants and impact on management: a narrative review. Adv Ther. 37(7):3112–28. DOI:
10.1007/s12325-020-01391-1. PMID:
32488657. PMCID:
PMC7467416.
Article
40. Shi X, Liu R, Basolo F, Giannini R, Shen X, Teng D, et al. 2016; differential clinicopathological risk and prognosis of major papillary thyroid cancer variants. J Clin Endocrinol Metab. 101(1):264–74. DOI:
10.1210/jc.2015-2917. PMID:
26529630. PMCID:
PMC4701842.
Article
41. Zimmer D, Plitt G, Prendes B, Ku J, Silver N, Lamarre E, et al. 2023; Utilizing dynamic risk stratification in patients with tall cell variant papillary thyroid cancer. Laryngoscope. 133(9):2430–8. DOI:
10.1002/lary.30725. PMID:
37159105.
Article
42. Vuong HG, Long NP, Anh NH, Nghi TD, Hieu MV, Hung LP, et al. 2018; Papillary thyroid carcinoma with tall cell features is as aggressive as tall cell variant: a meta-analysis. Endocr Connect. 7(12):R286–R93. DOI:
10.1530/EC-18-0333. PMID:
30352403. PMCID:
PMC6240142.
Article
43. Limberg J, Ullmann TM, Stefanova D, Buicko JL, Finnerty BM, Zarnegar R, et al. 2021; Does aggressive variant histology without invasive features predict overall survival in papillary thyroid cancer?: a national cancer database analysis. Ann Surg. 274(3):e276–e81. DOI:
10.1097/SLA.0000000000003632. PMID:
31599802.
44. Wang X, Cheng W, Liu C, Li J. 2016; Tall cell variant of papillary thyroid carcinoma: current evidence on clinicopathologic features and molecular biology. Oncotarget. 7(26):40792–9. DOI:
10.18632/oncotarget.8215. PMID:
27008708. PMCID:
PMC5130045.
Article
45. Ho AS, Luu M, Barrios L, Chen I, Melany M, Ali N, et al. 2020; Incidence and mortality risk spectrum across aggressive variants of papillary thyroid carcinoma. JAMA Oncol. 6(5):706–13. DOI:
10.1001/jamaoncol.2019.6851. PMID:
32134428. PMCID:
PMC7059113.
Article
46. Kazaure HS, Roman SA, Sosa JA. 2012; Aggressive variants of papillary thyroid cancer: incidence, characteristics and predictors of survival among 43,738 patients. Ann Surg Oncol. 19(6):1874–80. DOI:
10.1245/s10434-011-2129-x. PMID:
22065195.
Article
47. Bongers PJ, Kluijfhout WP, Verzijl R, Lustgarten M, Vermeer M, Goldstein DP, et al. 2019; Papillary thyroid cancers with focal tall cell change are as aggressive as tall cell variants and should not be considered as low-risk disease. Ann Surg Oncol. 26(8):2533–9. DOI:
10.1245/s10434-019-07444-2. PMID:
31115855.
Article
48. Shafique K, Baloch ZW. 2019; Risk stratification of papillary thyroid carcinoma and its variants; from clinicopathologic features to molecular profiling. Diagn Histopathol. 25(5):143–53. DOI:
10.1016/j.mpdhp.2019.02.001.
Article
49. Jiang C, Cheng T, Zheng X, Hong S, Liu S, Liu J, et al. 2018; Clinical behaviors of rare variants of papillary thyroid carcinoma are associated with survival: a population-level analysis. Cancer Manag Res. 10:465–72. DOI:
10.2147/CMAR.S157823. PMID:
29563836. PMCID:
PMC5849916.
Article
50. Wang S, Xiong Y, Zhao Q, Song H, Yi P, Liu C. 2019; Columnar cell papillary thyroid carcinoma prognosis: findings from the SEER database using propensity score matching analysis. Am J Transl Res. 11(9):6262–70.
52. Abazari MA, Soltani M, Moradi Kashkooli F, Raahemifar K. 2022; Synthetic 18F-FDG PET image generation using a combination of biomathematical modeling and machine learning. Cancers (Basel). 14(11):2786. DOI:
10.3390/cancers14112786. PMID:
35681767. PMCID:
PMC9179454.
Article
53. Donaldson LB, Yan F, Morgan PF, Kaczmar JM, Fernandes JK, Nguyen SA, et al. 2021; Hobnail variant of papillary thyroid carcinoma: a systematic review and meta-analysis. Endocrine. 72(1):27–39. DOI:
10.1007/s12020-020-02505-z. PMID:
33025563. PMCID:
PMC8111367.
Article
54. Ambrosi F, Righi A, Ricci C, Erickson LA, Lloyd RV, Asioli S. 2017; Hobnail variant of papillary thyroid carcinoma: a literature review. Endocr Pathol. 28(4):293–301. DOI:
10.1007/s12022-017-9502-7. PMID:
29019044.
Article
55. Lee JS, Lee JS, Yun HJ, Kim SM, Chang H, Lee YS, et al. 2023; Aggressive subtypes of papillary thyroid carcinoma smaller than 1 cm. J Clin Endocrinol Metab. 108(6):1370–5. DOI:
10.1210/clinem/dgac739. PMID:
36546348. PMCID:
PMC10188299.
Article
56. Alswailem M, Alghamdi B, Alotaibi A, Aljomiah A, Al-Hindi H, Murugan AK, et al. 2023; Molecular genetics of diffuse sclerosing papillary thyroid cancer. J Clin Endocrinol Metab. 108(9):e704–e11. DOI:
10.1210/clinem/dgad185. PMID:
36995892.
Article
57. Cavaco D, Martins AF, Cabrera R, Vilar H, Leite V. 2022; Diffuse sclerosing variant of papillary thyroid carcinoma: outcomes of 33 cases. Eur Thyroid J. 11(1):e210020. DOI:
10.1530/ETJ-21-0020. PMID:
34981753. PMCID:
PMC9142808.
Article
58. Kim SY, Shin SJ, Lee DG, Yun HJ, Kim SM, Chang H, et al. 2023; Clinicopathological and genetic characteristics of patients of different ages with diffuse sclerosing variant papillary thyroid carcinoma. Cancers (Basel). 15(12):3101. DOI:
10.3390/cancers15123101. PMID:
37370711. PMCID:
PMC10296723.
Article
59. Vuong HG, Kondo T, Pham TQ, Oishi N, Mochizuki K, Nakazawa T, et al. 2017; Prognostic significance of diffuse sclerosing variant papillary thyroid carcinoma: a systematic review and meta-analysis. Eur J Endocrinol. 176(4):433–41. DOI:
10.1530/EJE-16-0863. PMID:
28183787.
Article
60. Crayton H, Wu K, Leong D, Bhimani N, Gild M, Glover A. 2023; Diffuse sclerosing variant papillary thyroid carcinoma has worse survival than classic papillary thyroid carcinoma: a meta-analysis. Endocr Relat Cancer. 30(6):e220348. DOI:
10.1530/ERC-22-0348. PMID:
36952650.
Article
61. Moreno Egea A, Rodriguez Gonzalez JM, Sola Perez J, Soria Cogollos T, Parrilla Paricio P. 1993; Prognostic value of the tall cell variety of papillary cancer of the thyroid. Eur J Surg Oncol. 19(6):517–21.
62. Terry JH, St John SA, Karkowski FJ, Suarez JR, Yassa NH, Platica CD, et al. 1994; Tall cell papillary thyroid cancer: incidence and prognosis. Am J Surg. 168(5):459–61. DOI:
10.1016/S0002-9610(05)80099-6. PMID:
7977973.
Article
63. Segal K, Friedental R, Lubin E, Shvero J, Sulkes J, Feinmesser R. 1995; Papillary carcinoma of the thyroid. Otolaryngol Head Neck Surg. 113(4):356–63. DOI:
10.1016/S0194-59989570068-4. PMID:
7567004.
Article
64. Johnson TL, Lloyd RV, Thompson NW, Beierwaltes WH, Sisson JC. 1988; Prognostic implications of the tall cell variant of papillary thyroid carcinoma. Am J Surg Pathol. 12(1):22–7. DOI:
10.1097/00000478-198801000-00003. PMID:
3337337.
Article
65. Ghossein RA, Leboeuf R, Patel KN, Rivera M, Katabi N, Carlson DL, et al. 2007; Tall cell variant of papillary thyroid carcinoma without extrathyroid extension: biologic behavior and clinical implications. Thyroid. 17(7):655–61. DOI:
10.1089/thy.2007.0061. PMID:
17696836.
Article
66. Michels JJ, Jacques M, Henry-Amar M, Bardet S. 2007; Prevalence and prognostic significance of tall cell variant of papillary thyroid carcinoma. Hum Pathol. 38(2):212–9. DOI:
10.1016/j.humpath.2006.08.001. PMID:
17097131.
Article
68. Beninato T, Scognamiglio T, Kleiman DA, Uccelli A, Vaca D, Fahey TJ 3rd, et al. 2013; Ten percent tall cells confer the aggressive features of the tall cell variant of papillary thyroid carcinoma. Surgery. 154(6):1331–6. discussion 6DOI:
10.1016/j.surg.2013.05.009. PMID:
24238051.
Article
69. Regalbuto C, Malandrino P, Frasca F, Pellegriti G, Le Moli R, Vigneri R, et al. 2013; The tall cell variant of papillary thyroid carcinoma: clinical and pathological features and outcomes. J Endocrinol Invest. 36(4):249–54.
70. Prendiville S, Burman KD, Ringel MD, Shmookler BM, Deeb ZE, Wolfe K, et al. 2000; Tall cell variant: an aggressive form of papillary thyroid carcinoma. Otolaryngol Head Neck Surg. 122(3):352–7. DOI:
10.1016/S0194-5998(00)70047-7. PMID:
10699809.
Article
71. Russo M, Malandrino P, Moleti M, Vermiglio F, Violi MA, Marturano I, et al. 2017; Tall cell and diffuse sclerosing variants of papillary thyroid cancer: outcome and predicting value of risk stratification methods. J Endocrinol Invest. 40(11):1235–41. DOI:
10.1007/s40618-017-0688-9. PMID:
28528434.
Article
72. Song E, Jeon MJ, Oh HS, Han M, Lee YM, Kim TY, et al. 2018; Do aggressive variants of papillary thyroid carcinoma have worse clinical outcome than classic papillary thyroid carcinoma? Eur J Endocrinol. 179(3):135–42. DOI:
10.1530/EJE-17-0991. PMID:
29875289.
Article
73. Scholfield DW, Fitzgerald CW, Alzumaili B, Eagan A, Xu B, Martinez G, et al. 2023; Diffuse sclerosing papillary thyroid carcinoma: clinicopathological characteristics and prognostic implications compared with classic and tall cell papillary thyroid cancer. Ann Surg Oncol. 30(8):4761–70. DOI:
10.1245/s10434-023-13589-y. PMID:
37154968.
Article
75. Chen JH, Faquin WC, Lloyd RV, Nose V. 2011; Clinicopathological and molecular characterization of nine cases of columnar cell variant of papillary thyroid carcinoma. Mod Pathol. 24(5):739–49. DOI:
10.1038/modpathol.2011.2. PMID:
21358618.
Article
76. Cho J, Shin JH, Hahn SY, Oh YL. 2018; Columnar cell variant of papillary thyroid carcinoma: ultrasonographic and clinical differentiation between the indolent and aggressive types. Korean J Radiol. 19(5):1000–5. DOI:
10.3348/kjr.2018.19.5.1000. PMID:
30174490. PMCID:
PMC6082763.
Article
77. Asioli S, Erickson LA, Sebo TJ, Zhang J, Jin L, Thompson GB, et al. 2010; Papillary thyroid carcinoma with prominent hobnail features: a new aggressive variant of moderately differentiated papillary carcinoma. A clinicopathologic, immunohistochemical, and molecular study of eight cases. Am J Surg Pathol. 34(1):44–52. DOI:
10.1097/PAS.0b013e3181c46677. PMID:
19956062.
Article
78. Lubitz CC, Economopoulos KP, Pawlak AC, Lynch K, Dias-Santagata D, Faquin WC, et al. 2014; Hobnail variant of papillary thyroid carcinoma: an institutional case series and molecular profile. Thyroid. 24(6):958–65. DOI:
10.1089/thy.2013.0573. PMID:
24417340. PMCID:
PMC4046200.
Article
79. Amacher AM, Goyal B, Lewis JS Jr, El-Mofty SK, Chernock RD. 2015; Prevalence of a hobnail pattern in papillary, poorly differentiated, and anaplastic thyroid carcinoma: a possible manifestation of high-grade transformation. Am J Surg Pathol. 39(2):260–5. DOI:
10.1097/PAS.0000000000000329. PMID:
25321328.
80. Teng L, Deng W, Lu J, Zhang J, Ren X, Duan H, et al. 2017; Hobnail variant of papillary thyroid carcinoma: molecular profiling and comparison to classical papillary thyroid carcinoma, poorly differentiated thyroid carcinoma and anaplastic thyroid carcinoma. Oncotarget. 8(13):22023–33. DOI:
10.18632/oncotarget.15786. PMID:
28423545. PMCID:
PMC5400643.
Article
81. Spyroglou A, Kostopoulos G, Tseleni S, Toulis K, Bramis K, Mastorakos G, et al. 2022; Hobnail papillary thyroid carcinoma, a systematic review and meta-analysis. Cancers (Basel). 14(11):2785. DOI:
10.3390/cancers14112785. PMID:
35681765. PMCID:
PMC9179392.
Article
82. Malandrino P, Russo M, Regalbuto C, Pellegriti G, Moleti M, Caff A, et al. 2016; Outcome of the diffuse sclerosing variant of papillary thyroid cancer: a meta-analysis. Thyroid. 26(9):1285–92. DOI:
10.1089/thy.2016.0168. PMID:
27349273.
Article
83. Nikiforov YE, Erickson LA, Nikiforova MN, Caudill CM, Lloyd RV. 2001; Solid variant of papillary thyroid carcinoma: incidence, clinical-pathologic characteristics, molecular analysis, and biologic behavior. Am J Surg Pathol. 25(12):1478–84. DOI:
10.1097/00000478-200112000-00002. PMID:
11717536.
84. Vuong HG, Odate T, Duong UNP, Mochizuki K, Nakazawa T, Katoh R, et al. 2018; Prognostic importance of solid variant papillary thyroid carcinoma: a systematic review and meta-analysis. Head Neck. 40(7):1588–97. DOI:
10.1002/hed.25123. PMID:
29509280.
Article
85. Vural C, Kiraz U, Turan G, Ozkara SK, Sozen M, Cetinarslan B. 2021; Solid variant of papillary thyroid carcinoma: an analysis of 28 cases with current literature. Ann Diagn Pathol. 52:151737. DOI:
10.1016/j.anndiagpath.2021.151737. PMID:
33838489.
Article
86. Xu B, Viswanathan K, Zhang L, Edmund LN, Ganly O, Tuttle RM, et al. 2022; The solid variant of papillary thyroid carcinoma: a multi-institutional retrospective study. Histopathology. 81(2):171–82. DOI:
10.1111/his.14668. PMID:
35474588.
Article
87. Diker-Cohen T, Hirsch D, Shimon I, Bachar G, Akirov A, Duskin-Bitan H, et al. Impact of minimal extra-thyroid extension in differentiated thyroid cancer: systematic review and meta-analysis. J Clin Endocrinol Metab. 2018; [Online ahead of print]. DOI:
10.1210/jc.2018-00081. PMID:
29506045.
Article
88. Castagna MG, Forleo R, Maino F, Fralassi N, Barbato F, Palmitesta P, et al. 2018; Small papillary thyroid carcinoma with minimal extrathyroidal extension should be managed as ATA low-risk tumor. J Endocrinol Invest. 41(9):1029–35. DOI:
10.1007/s40618-018-0854-8. PMID:
29470826.
Article
89. He Q, Ji F, Fu X, Li Z, Qiu X. 2022; "Micro" extrathyroidal extension in risk stratification for papillary thyroid carcinoma: should it be in the intermediate-risk or high-risk group? A single-center retrospective study. Cancer Manag Res. 14:3181–90. DOI:
10.2147/CMAR.S390468. PMID:
36415538. PMCID:
PMC9675991.
Article
90. Nixon IJ, Ganly I, Patel S, Palmer FL, Whitcher MM, Tuttle RM, et al. 2011; The impact of microscopic extrathyroid extension on outcome in patients with clinical T1 and T2 well-differentiated thyroid cancer. Surgery. 150(6):1242–9. DOI:
10.1016/j.surg.2011.09.007. PMID:
22136847. PMCID:
PMC4151609.
Article
91. Kang IK, Kim K, Bae JS, Kim JS. 2021; Is completion thyroidectomy necessary in patients with papillary thyroid carcinoma who underwent lobectomy? Korean J Head Neck Oncol. 37(2):25–31. DOI:
10.21593/kjhno/2021.37.2.25.
Article
92. Xu M, Xi Z, Zhao Q, Yang W, Tan J, Yi P, et al. 2023; Causal inference between aggressive extrathyroidal extension and survival in papillary thyroid cancer: a propensity score matching and weighting analysis. Front Endocrinol (Lausanne). 14:1149826. DOI:
10.3389/fendo.2023.1149826. PMID:
37293504. PMCID:
PMC10244725.
Article
93. Zhang L, Liu J, Wang P, Xue S, Li J, Chen G. 2020; Impact of gross strap muscle invasion on outcome of differentiated thyroid cancer: systematic review and meta-analysis. Front Oncol. 10:1687. DOI:
10.3389/fonc.2020.01687. PMID:
33102203. PMCID:
PMC7546766.
Article
94. Liu Z, Huang Y, Chen S, Hu D, Wang M, Zhou L, et al. 2019; Minimal extrathyroidal extension affects the prognosis of differentiated thyroid cancer: is there a need for change in the AJCC classification system? PLoS One. 14(6):e0218171. DOI:
10.1371/journal.pone.0218171. PMID:
31199822. PMCID:
PMC6568405.
Article
95. Abraham E, Roshan D, Tran B, Wykes J, Campbell P, Ebrahimi A. 2019; The extent of extrathyroidal extension is a key determinant of prognosis in T4a papillary thyroid cancer. J Surg Oncol. 120(6):1016–22. DOI:
10.1002/jso.25683. PMID:
31452204.
Article
96. Kim Y, Kim YS, Bae JS, Kim JS, Kim K. 2022; Is gross extrathyroidal extension to strap muscles (T3b) only a risk factor for recurrence in papillary thyroid carcinoma? A propensity score matching study. Cancers (Basel). 14(10):2370. DOI:
10.3390/cancers14102370. PMID:
35625974. PMCID:
PMC9139627.
Article
97. Jang A, Jin M, Kim WW, Jeon MJ, Sung TY, Song DE, et al. 2022; Prognosis of patients with 1-4 cm papillary thyroid cancer who underwent lobectomy: focus on gross extrathyroidal extension invading only the strap muscles. Ann Surg Oncol. 29(12):7835–42. DOI:
10.1245/s10434-022-12155-2. PMID:
35907995.
Article
98. Lyu YS, Pyo JS, Cho WJ, Kim SY, Kim JH. 2021; Clinicopathological significance of papillary thyroid carcinoma located in the isthmus: a meta-analysis. World J Surg. 45(9):2759–68. DOI:
10.1007/s00268-021-06178-1. PMID:
34117511.
Article
99. Park JO, Kim JH, Joo YH, Kim SY, Kim GJ, Kim HB, et al. 2023; Guideline for the surgical management of locally invasive differentiated thyroid cancer from the Korean Society of Head and Neck Surgery. Clin Exp Otorhinolaryngol. 16(1):1–19. DOI:
10.21053/ceo.2022.01732. PMID:
36634669. PMCID:
PMC9985989.
Article
101. Hay ID, Johnson TR, Thompson GB, Sebo TJ, Reinalda MS. 2016; Minimal extrathyroid extension in papillary thyroid carcinoma does not result in increased rates of either cause- specific mortality or postoperative tumor recurrence. Surgery. 159(1):11–9. DOI:
10.1016/j.surg.2015.05.046. PMID:
26514317.
Article
102. Harries V, McGill M, Yuan A, Wang LY, Tuttle RM, Shaha AR, et al. 2022; Does macroscopic extrathyroidal extension to the strap muscles alone affect survival in papillary thyroid carcinoma? Surgery. 171(5):1341–7. DOI:
10.1016/j.surg.2021.08.041. PMID:
34600743. PMCID:
PMC8960478.
Article
103. Zuhur SS, Aggul H, Avci U, Erol S, Tuna MM, Uysal S, et al. 2024; The impact of microscopic extrathyroidal extension on the clinical outcome of classic subtype papillary thyroid microcarcinoma: a multicenter study. Endocrine. 83(3):700–7. DOI:
10.1007/s12020-023-03533-1. PMID:
37736822.
Article
104. Park JS, Chang JW, Liu L, Jung SN, Koo BS. 2017; Clinical implications of microscopic extrathyroidal extension in patients with papillary thyroid carcinoma. Oral Oncol. 72:183–7. DOI:
10.1016/j.oraloncology.2017.02.008. PMID:
28222967.
Article
105. Beom Heo D, Piao Y, Hee Lee J, Ju SH, Yi HS, Su Kim M, et al. 2022; Completion thyroidectomy may not be required for papillary thyroid carcinoma with multifocality, lymphovascular invasion, extrathyroidal extension to the strap muscles, or five or more central lymph node micrometastasis. Oral Oncol. 134:106115. DOI:
10.1016/j.oraloncology.2022.106115. PMID:
36108524.
Article
106. Fukushima M, Ito Y, Hirokawa M, Miya A, Shimizu K, Miyauchi A. 2010; Prognostic impact of extrathyroid extension and clinical lymph node metastasis in papillary thyroid carcinoma depend on carcinoma size. World J Surg. 34(12):3007–14. DOI:
10.1007/s00268-010-0776-x. PMID:
20824274.
Article
107. Ito Y, Tomoda C, Uruno T, Takamura Y, Miya A, Kobayashi K, et al. 2006; Prognostic significance of extrathyroid extension of papillary thyroid carcinoma: massive but not minimal extension affects the relapse-free survival. World J Surg. 30(5):780–6. DOI:
10.1007/s00268-005-0270-z. PMID:
16411013.
Article
108. Hotomi M, Sugitani I, Toda K, Kawabata K, Fujimoto Y. 2012; A novel definition of extrathyroidal invasion for patients with papillary thyroid carcinoma for predicting prognosis. World J Surg. 36(6):1231–40. DOI:
10.1007/s00268-012-1518-z. PMID:
22402972.
Article
109. Danilovic DLS, Castroneves LA, Suemoto CK, Elias LO, Soares IC, Camargo RY, et al. 2020; Is there a difference between minimal and gross extension into the strap muscles for the risk of recurrence in papillary thyroid carcinomas? Thyroid. 30(7):1008–16. DOI:
10.1089/thy.2019.0753. PMID:
32059626.
Article
110. Li G, Li R, Song L, Chen W, Jiang K, Tang H, et al. 2020; Implications of extrathyroidal extension invading only the strap muscles in papillary thyroid carcinomas. Thyroid. 30(1):57–64. DOI:
10.1089/thy.2018.0801. PMID:
31830859.
Article
111. Amit M, Boonsripitayanon M, Goepfert RP, Tam S, Busaidy NL, Cabanillas ME, et al. 2018; Extrathyroidal extension: does strap muscle invasion alone influence recurrence and survival in patients with differentiated thyroid cancer? Ann Surg Oncol. 25(11):3380–8. DOI:
10.1245/s10434-018-6563-x. PMID:
30022274.
Article
112. Park SY, Kim HI, Kim JH, Kim JS, Oh YL, Kim SW, et al. 2018; Prognostic significance of gross extrathyroidal extension invading only strap muscles in differentiated thyroid carcinoma. Br J Surg. 105(9):1155–62. DOI:
10.1002/bjs.10830. PMID:
29663333.
Article
114. Sanabria A, Kowalski LP, Nixon IJ, Simo R. 2021; Microscopic positive surgical margins in thyroid carcinoma: a proposal for thyroid oncology teams. Langenbecks Arch Surg. 406(3):563–9. DOI:
10.1007/s00423-021-02095-y. PMID:
33555410.
Article
115. Ito Y, Fukushima M, Yabuta T, Tomoda C, Inoue H, Kihara M, et al. 2009; Local prognosis of patients with papillary thyroid carcinoma who were intra-operatively diagnosed as having minimal invasion of the trachea: a 17-year experience in a single institute. Asian J Surg. 32(2):102–8. DOI:
10.1016/S1015-9584(09)60019-1. PMID:
19423457.
Article
116. Gronlund MP, Jensen JS, Hahn CH, Gronhoj C, Buchwald CV. 2021; Risk factors for recurrence of follicular thyroid cancer: a systematic review. Thyroid. 31(10):1523–30. DOI:
10.1089/thy.2020.0921. PMID:
34102860.
Article
118. Tzavara I, Vlassopoulou B, Alevizaki C, Koukoulis G, Tzanela M, Koumoussi P, et al. 1999; Differentiated thyroid cancer: a retrospective analysis of 832 cases from Greece. Clin Endocrinol (Oxf). 50(5):643–54. DOI:
10.1046/j.1365-2265.1999.00715.x. PMID:
10468931.
Article
119. Enomoto K, Enomoto Y, Uchino S, Yamashita H, Noguchi S. 2013; Follicular thyroid cancer in children and adolescents: clinicopathologic features, long-term survival, and risk factors for recurrence. Endocr J. 60(5):629–35. DOI:
10.1507/endocrj.EJ12-0372. PMID:
23327804.
Article
120. Kim WG, Kim TY, Kim TH, Jang HW, Jo YS, Park YJ, et al. 2014; Follicular and Hurthle cell carcinoma of the thyroid in iodine-sufficient area: retrospective analysis of Korean multicenter data. Korean J Intern Med. 29(3):325–33. DOI:
10.3904/kjim.2014.29.3.325. PMID:
24851067. PMCID:
PMC4028522.
Article
121. Zhang T, He L, Wang Z, Dong W, Sun W, Zhang P, et al. 2023; Risk factors for death of follicular thyroid carcinoma: a systematic review and meta-analysis. Endocrine. 82(3):457–66. DOI:
10.1007/s12020-023-03466-9. PMID:
37804444. PMCID:
PMC10618390.
Article
122. O'Neill CJ, Vaughan L, Learoyd DL, Sidhu SB, Delbridge LW, Sywak MS. 2011; Management of follicular thyroid carcinoma should be individualised based on degree of capsular and vascular invasion. Eur J Surg Oncol. 37(2):181–5. DOI:
10.1016/j.ejso.2010.11.005. PMID:
21144693.
123. Lang W, Choritz H, Hundeshagen H. 1986; Risk factors in follicular thyroid carcinomas. A retrospective follow-up study covering a 14-year period with emphasis on morphological findings. Am J Surg Pathol. 10(4):246–55. DOI:
10.1097/00000478-198604000-00003. PMID:
3706611.
124. Huang CC, Hsueh C, Liu FH, Chao TC, Lin JD. 2011; Diagnostic and therapeutic strategies for minimally and widely invasive follicular thyroid carcinomas. Surg Oncol. 20(1):1–6. DOI:
10.1016/j.suronc.2009.06.006. PMID:
19596568.
Article
125. Yamazaki H, Katoh R, Sugino K, Matsuzu K, Masaki C, Akaishi J, et al. Encapsulated angioinvasive follicular thyroid carcinoma: prognostic impact of the extent of vascular invasion. Ann Surg Oncol. 2022; [Online ahead of print]. DOI:
10.1245/s10434-022-11401-x. PMID:
35169976.
Article
126. Lee YM, Lee YH, Song DE, Kim WB, Sung TY, Yoon JH, et al. 2017; Prognostic impact of further treatments on distant metastasis in patients with minimally invasive follicular thyroid carcinoma: verification using inverse probability of treatment weighting. World J Surg. 41(1):138–45. DOI:
10.1007/s00268-016-3608-9. PMID:
27272481.
Article
127. Matsuura D, Yuan A, Wang L, Ranganath R, Adilbay D, Harries V, et al. 2022; Follicular and Hurthle cell carcinoma: comparison of clinicopathological features and clinical outcomes. Thyroid. 32(3):245–54. DOI:
10.1089/thy.2021.0424. PMID:
35078345. PMCID:
PMC9206490.
Article
128. Leong D, Gill AJ, Turchini J, Waller M, Clifton-Bligh R, Glover A, et al. 2023; The prognostic impact of extent of vascular invasion in follicular thyroid carcinoma. World J Surg. 47(2):412–20. DOI:
10.1007/s00268-022-06696-6. PMID:
36031639.
Article
129. Ito Y, Hirokawa M, Masuoka H, Higashiyama T, Kihara M, Onoda N, et al. 2022; Prognostic factors for follicular thyroid carcinoma: the importance of vascular invasion. Endocr J. 69(9):1149–56. DOI:
10.1507/endocrj.EJ22-0077. PMID:
35491160.
Article
130. D'Avanzo A, Treseler P, Ituarte PH, Wong M, Streja L, Greenspan FS, et al. 2004; Follicular thyroid carcinoma: histology and prognosis. Cancer. 100(6):1123–9. DOI:
10.1002/cncr.20081. PMID:
15022277.
131. Jin M, Kim ES, Kim BH, Kim HK, Yi HS, Jeon MJ, et al. 2020; Clinical implication of World Health Organization classification in patients with follicular thyroid carcinoma in South Korea: a multicenter cohort study. Endocrinol Metab (Seoul). 35(3):618–27. DOI:
10.3803/EnM.2020.742. PMID:
32981304. PMCID:
PMC7520579.
Article
132. Kim HJ, Sung JY, Oh YL, Kim JH, Son YI, Min YK, et al. 2014; Association of vascular invasion with increased mortality in patients with minimally invasive follicular thyroid carcinoma but not widely invasive follicular thyroid carcinoma. Head Neck. 36(12):1695–700. DOI:
10.1002/hed.23511. PMID:
24115217.
Article
133. Ito Y, Hirokawa M, Fujishima M, Masuoka H, Higashiyama T, Kihara M, et al. 2021; Prognostic significance of vascular invasion and cell-proliferation activity in widely invasive follicular carcinoma of the thyroid. Endocr J. 68(8):881–8. DOI:
10.1507/endocrj.EJ21-0064. PMID:
33746136.
Article
134. Xu B, Wang L, Tuttle RM, Ganly I, Ghossein R. 2015; Prognostic impact of extent of vascular invasion in low-grade encapsulated follicular cell-derived thyroid carcinomas: a clinicopathologic study of 276 cases. Hum Pathol. 46(12):1789–98. DOI:
10.1016/j.humpath.2015.08.015. PMID:
26482605. PMCID:
PMC4981341.
Article
135. Yamazaki H, Sugino K, Katoh R, Matsuzu K, Kitagawa W, Nagahama M, et al. 2023; New insights on the importance of the extent of vascular invasion in widely invasive follicular thyroid carcinoma. World J Surg. 47(11):2767–75. DOI:
10.1007/s00268-023-07127-w. PMID:
37516689.
Article
136. Roti E, degli Uberti EC, Bondanelli M, Braverman LE. 2008; Thyroid papillary microcarcinoma: a descriptive and meta-analysis study. Eur J Endocrinol. 159(6):659–73. DOI:
10.1530/EJE-07-0896. PMID:
18713843.
Article
137. Park JH, Yoon JH. 2019; Lobectomy in patients with differentiated thyroid cancer: indications and follow-up. Endocr Relat Cancer. 26(7):R381–R93. DOI:
10.1530/ERC-19-0085. PMID:
31018176.
Article
138. Gardner RE, Tuttle RM, Burman KD, Haddady S, Truman C, Sparling YH, et al. 2000; Prognostic importance of vascular invasion in papillary thyroid carcinoma. Arch Otolaryngol Head Neck Surg. 126(3):309–12. DOI:
10.1001/archotol.126.3.309. PMID:
10722002.
Article
139. Nishida T, Katayama S, Tsujimoto M. 2002; The clinicopathological significance of histologic vascular invasion in differentiated thyroid carcinoma. Am J Surg. 183(1):80–6. DOI:
10.1016/S0002-9610(01)00843-1. PMID:
11869709.
Article
141. Wreesmann VB, Nixon IJ, Rivera M, Katabi N, Palmer F, Ganly I, et al. 2015; Prognostic value of vascular invasion in well- differentiated papillary thyroid carcinoma. Thyroid. 25(5):503–8. DOI:
10.1089/thy.2015.0052. PMID:
25748079. PMCID:
PMC4968276.
Article
142. Reilly J, Faridmoayer E, Lapkus M, Pastewski J, Sun F, Elassar H, et al. 2022; Vascular invasion predicts advanced tumor characteristics in papillary thyroid carcinoma. Am J Surg. 223(3):487–91. DOI:
10.1016/j.amjsurg.2021.11.038. PMID:
34952686.
Article
143. Suh YJ, Kwon H, Kim SJ, Choi JY, Lee KE, Park YJ, et al. 2015; Factors affecting the locoregional recurrence of conventional papillary thyroid carcinoma after surgery: a retrospective analysis of 3381 patients. Ann Surg Oncol. 22(11):3543–9. DOI:
10.1245/s10434-015-4448-9. PMID:
25743326.
Article
144. de Castro TP, Waissmann W, Simoes TC, de Mello RC, Carvalho DP. 2016; Predictors for papillary thyroid cancer persistence and recurrence: a retrospective analysis with a 10-year follow-up cohort study. Clin Endocrinol (Oxf). 85(3):466–74. DOI:
10.1111/cen.13032. PMID:
26834009.
Article
145. Sorrenti S, Carbotta G, Di Matteo FM, Catania A, Pironi D, Tartaglia F, et al. 2020; Evaluation of clinicopathological and molecular parameters on disease recurrence of papillary thyroid cancer patient: a retrospective observational study. Cancers (Basel). 12(12):3637. DOI:
10.3390/cancers12123637. PMID:
33291668. PMCID:
PMC7761952.
Article
146. Furlan JC, Bedard YC, Rosen IB. 2004; Clinicopathologic significance of histologic vascular invasion in papillary and follicular thyroid carcinomas. J Am Coll Surg. 198(3):341–8. DOI:
10.1016/j.jamcollsurg.2003.11.012. PMID:
14992733.
147. Cao J, Hu JL, Chen C, Wang QL, Fang XH, Zhang Y, et al. 2016; Vascular invasion is an independent prognostic factor for distant recurrence-free survival in papillary thyroid carcinoma: a matched-case comparative study. J Clin Pathol. 69(10):872–7. DOI:
10.1136/jclinpath-2015-203547. PMID:
27010434.
Article
148. Chereau N, Tresallet C, Noullet S, Godiris-Petit G, Tissier F, Leenhardt L, et al. 2016; Does the T1 subdivision correlate with the risk of recurrence of papillary thyroid cancer? Langenbecks Arch Surg. 401(2):223–30. DOI:
10.1007/s00423-016-1399-y. PMID:
26957089.
Article
149. Mai KT, Khanna P, Yazdi HM, Perkins DG, Veinot JP, Thomas J, et al. 2002; Differentiated thyroid carcinomas with vascular invasion: a comparative study of follicular, Hurthle cell and papillary thyroid carcinoma. Pathology. 34(3):239–44. DOI:
10.1080/00313020220131291. PMID:
12109784.
Article
150. Mete O, Asa SL. 2011; Pathological definition and clinical significance of vascular invasion in thyroid carcinomas of follicular epithelial derivation. Mod Pathol. 24(12):1545–52. DOI:
10.1038/modpathol.2011.119. PMID:
21804527.
Article
151. Kim JM, Kim TY, Kim WB, Gong G, Kim SC, Hong SJ, et al. 2006; Lymphovascular invasion is associated with lateral cervical lymph node metastasis in papillary thyroid carcinoma. Laryngoscope. 116(11):2081–5. DOI:
10.1097/01.mlg.0000242118.79647.a9. PMID:
17075398.
Article
153. Amin SN, Shinn JR, Naguib MM, Netterville JL, Rohde SL. 2020; Risk factors and outcomes of postoperative recurrent well-differentiated thyroid cancer: a single institution's 15-year experience. Otolaryngol Head Neck Surg. 162(4):469–75. DOI:
10.1177/0194599820904923. PMID:
32069184.
Article
155. Kim KJ, Kim SM, Lee YS, Chung WY, Chang HS, Park CS. 2015; Prognostic significance of tumor multifocality in papillary thyroid carcinoma and its relationship with primary tumor size: a retrospective study of 2,309 consecutive patients. Ann Surg Oncol. 22(1):125–31. DOI:
10.1245/s10434-014-3899-8. PMID:
25092159.
Article
156. Wang F, Yu X, Shen X, Zhu G, Huang Y, Liu R, et al. 2017; The prognostic value of tumor multifocality in clinical outcomes of papillary thyroid cancer. J Clin Endocrinol Metab. 102(9):3241–50. DOI:
10.1210/jc.2017-00277. PMID:
28582521. PMCID:
PMC5587077.
Article
157. La Greca A, Xu B, Ghossein R, Tuttle RM, Sabra MM. 2017; Patients with multifocal macroscopic papillary thyroid carcinoma have a low risk of recurrence at early follow-up after total thyroidectomy and radioactive iodine treatment. Eur Thyroid J. 6(1):31–9. DOI:
10.1159/000448752. PMID:
28611946. PMCID:
PMC5465646.
Article
158. Jeon YW, Gwak HG, Lim ST, Schneider J, Suh YJ. 2019; Long-term prognosis of unilateral and multifocal papillary thyroid microcarcinoma after unilateral lobectomy versus total thyroidectomy. Ann Surg Oncol. 26(9):2952–8. DOI:
10.1245/s10434-019-07482-w. PMID:
31264119.
Article
160. Harries V, Wang LY, McGill M, Xu B, Tuttle RM, Wong RJ, et al. 2020; Should multifocality be an indication for completion thyroidectomy in papillary thyroid carcinoma? Surgery. 167(1):10–7. DOI:
10.1016/j.surg.2019.03.031. PMID:
31515125. PMCID:
PMC6904525.
Article
161. Kim HJ, Sohn SY, Jang HW, Kim SW, Chung JH. 2013; Multifocality, but not bilaterality, is a predictor of disease recurrence/persistence of papillary thyroid carcinoma. World J Surg. 37(2):376–84. DOI:
10.1007/s00268-012-1835-2. PMID:
23135422.
Article
162. Omi Y, Haniu K, Kamio H, Fujimoto M, Yoshida Y, Horiuchi K, et al. 2022; Pathological multifocality is not a prognosis factor of papillary thyroid carcinoma: a single-center, retrospective study. World J Surg Oncol. 20(1):394. DOI:
10.1186/s12957-022-02869-8. PMID:
36510206. PMCID:
PMC9743747.
Article
163. Leboulleux S, Rubino C, Baudin E, Caillou B, Hartl DM, Bidart JM, et al. 2005; Prognostic factors for persistent or recurrent disease of papillary thyroid carcinoma with neck lymph node metastases and/or tumor extension beyond the thyroid capsule at initial diagnosis. J Clin Endocrinol Metab. 90(10):5723–9. DOI:
10.1210/jc.2005-0285. PMID:
16030160.
Article
166. Geron Y, Benbassat C, Shteinshneider M, Or K, Markus E, Hirsch D, et al. 2019; Multifocality is not an independent prognostic factor in papillary thyroid cancer: a propensity score-matching analysis. Thyroid. 29(4):513–22. DOI:
10.1089/thy.2018.0547. PMID:
30799769.
Article
167. Kim Y, Roh JL, Gong G, Cho KJ, Choi SH, Nam SY, et al. 2017; Risk factors for lateral neck recurrence of N0/N1a papillary thyroid cancer. Ann Surg Oncol. 24(12):3609–16. DOI:
10.1245/s10434-017-6057-2. PMID:
28822118.
Article
168. Li X, Zhao C, Hu D, Yu Y, Gao J, Zhao W, et al. 2013; Hemithyroidectomy increases the risk of disease recurrence in patients with ipsilateral multifocal papillary thyroid carcinoma. Oncol Lett. 5(4):1412–6. DOI:
10.3892/ol.2013.1202. PMID:
23599804. PMCID:
PMC3629150.
Article
169. Jarząb B, Dedecjus M, Lewiński M, Adamczewski Z, Bakuła-Zalewska E, Bałdys-Waligórska A, et al. 2022; Diagnosis and treatment of thyroid cancer in adult patients - Recommendations of Polish Scientific Societies and the National Oncological Strategy. 2022 Update [Diagnostyka i leczenie raka tarczycy u chorych dorosłych - Rekomendacje Polskich Towarzystw Naukowych oraz Narodowej Strategii Onkologicznej. Aktualizacja na rok 2022]. Endokrynol Pol. 73(2):173–300. DOI:
10.5603/EP.a2022.0028. PMID:
35593680.
Article
171. Sugitani I, Kasai N, Fujimoto Y, Yanagisawa A. 2004; A novel classification system for patients with PTC: addition of the new variables of large (3 cm or greater) nodal metastases and reclassification during the follow-up period. Surgery. 135(2):139–48. DOI:
10.1016/S0039-6060(03)00384-2. PMID:
14739848.
Article
172. Randolph GW, Duh QY, Heller KS, LiVolsi VA, Mandel SJ, Steward DL, et al. 2012; The prognostic significance of nodal metastases from papillary thyroid carcinoma can be stratified based on the size and number of metastatic lymph nodes, as well as the presence of extranodal extension. Thyroid. 22(11):1144–52. DOI:
10.1089/thy.2012.0043. PMID:
23083442.
Article
173. Kim HI, Hyeon J, Park SY, Ahn HS, Kim K, Han JM, et al. 2019; Impact of extranodal extension on risk stratification in papillary thyroid carcinoma. Thyroid. 29(7):963–70. DOI:
10.1089/thy.2018.0541. PMID:
31025609. PMCID:
PMC6648218.
Article
174. Chidambaranathan N, Thiagarajan S, Gurukeerthi B, Sathe P, Samel P, Ramalingam N, et al. 2024; The significance of the presence of extranodal extension in the metastatic node of differentiated thyroid cancer: a proposal for modification in the American Thyroid Association (ATA) risk stratification. Eur Arch Otorhinolaryngol. 281(4):1923–31. DOI:
10.1007/s00405-023-08438-3. PMID:
38189969.
Article
175. Hwangbo Y, Kim JM, Park YJ, Lee EK, Lee YJ, Park DJ, et al. 2017; Long-term recurrence of small papillary thyroid cancer and its risk factors in a Korean multicenter study. J Clin Endocrinol Metab. 102(2):625–33.
Article
176. Nam SH, Roh JL, Gong G, Cho KJ, Choi SH, Nam SY, et al. 2018; Nodal factors predictive of recurrence after thyroidectomy and neck dissection for papillary thyroid carcinoma. Thyroid. 28(1):88–95. DOI:
10.1089/thy.2017.0334. PMID:
29117854.
Article
177. Lee YC, Na SY, Park GC, Han JH, Kim SW, Eun YG. 2017; Occult lymph node metastasis and risk of regional recurrence in papillary thyroid cancer after bilateral prophylactic central neck dissection: a multi-institutional study. Surgery. 161(2):465–71. DOI:
10.1016/j.surg.2016.07.031. PMID:
27574773.
Article
178. Zheng CM, Ji YB, Song CM, Ge MH, Tae K. 2018; Number of metastatic lymph nodes and ratio of metastatic lymph nodes to total number of retrieved lymph nodes are risk factors for recurrence in patients with clinically node negative papillary thyroid carcinoma. Clin Exp Otorhinolaryngol. 11(1):58–64. DOI:
10.21053/ceo.2017.00472. PMID:
29032663. PMCID:
PMC5831665.
Article
179. Ryu IS, Song CI, Choi SH, Roh JL, Nam SY, Kim SY. 2014; Lymph node ratio of the central compartment is a significant predictor for locoregional recurrence after prophylactic central neck dissection in patients with thyroid papillary carcinoma. Ann Surg Oncol. 21(1):277–83. DOI:
10.1245/s10434-013-3258-1. PMID:
24006096.
Article
180. Urken ML, Haser GC, Likhterov I, Wenig BM. 2016; The impact of metastatic lymph nodes on risk stratification in differentiated thyroid cancer: have we reached a higher level of understanding? Thyroid. 26(4):481–8. DOI:
10.1089/thy.2015.0544. PMID:
26892765.
Article
181. Veronese N, Luchini C, Nottegar A, Kaneko T, Sergi G, Manzato E, et al. 2015; Prognostic impact of extra-nodal extension in thyroid cancer: a meta-analysis. J Surg Oncol. 112(8):828–33. DOI:
10.1002/jso.24070. PMID:
26493240.
Article
182. Lee CW, Roh JL, Gong G, Cho KJ, Choi SH, Nam SY, et al. 2015; Risk factors for recurrence of papillary thyroid carcinoma with clinically node-positive lateral neck. Ann Surg Oncol. 22(1):117–24. DOI:
10.1245/s10434-014-3900-6. PMID:
25034816.
Article
183. Mansour J, Sagiv D, Alon E, Talmi Y. 2018; Prognostic value of lymph node ratio in metastatic papillary thyroid carcinoma. J Laryngol Otol. 132(1):8–13. DOI:
10.1017/S0022215117002250. PMID:
29122022.
Article
184. Jeon MJ, Yoon JH, Han JM, Yim JH, Hong SJ, Song DE, et al. 2013; The prognostic value of the metastatic lymph node ratio and maximal metastatic tumor size in pathological N1a papillary thyroid carcinoma. Eur J Endocrinol. 168(2):219–25. DOI:
10.1530/EJE-12-0744. PMID:
23161752.
Article
185. Chang YW, Kim HS, Jung SP, Kim HY, Lee JB, Bae JW, et al. 2016; Pre-ablation stimulated thyroglobulin is a better predictor of recurrence in pathological N1a papillary thyroid carcinoma than the lymph node ratio. Int J Clin Oncol. 21(5):862–8. DOI:
10.1007/s10147-016-0956-2. PMID:
26837274.
Article
186. Park YM, Wang SG, Shin DH, Kim IJ, Son SM, Lee BJ. 2016; Lymph node status of lateral neck compartment in patients with N1b papillary thyroid carcinoma. Acta Otolaryngol. 136(3):319–24. DOI:
10.3109/00016489.2015.1116045. PMID:
26635131.
Article
187. Kang IK, Park J, Bae JS, Kim JS, Kim K. 2023; Lymph node ratio predicts recurrence in patients with papillary thyroid carcinoma with low lymph node yield. Cancers (Basel). 15(11):2947. DOI:
10.3390/cancers15112947. PMID:
37296909. PMCID:
PMC10252081.
Article
189. Lee J, Lee SG, Kim K, Yim SH, Ryu H, Lee CR, et al. 2019; Clinical value of lymph node ratio integration with the 8(th) edition of the UICC TNM classification and 2015 ATA risk stratification systems for recurrence prediction in papillary thyroid cancer. Sci Rep. 9(1):13361. DOI:
10.1038/s41598-019-50069-4. PMID:
31527831. PMCID:
PMC6746784.
Article
190. Seok J, Ryu CH, Park SY, Lee CY, Lee YK, Hwangbo Y, et al. 2021; Factors affecting central node metastasis and metastatic lymph node ratio in papillary thyroid cancer. Otolaryngol Head Neck Surg. 165(4):519–27. DOI:
10.1177/0194599821991465. PMID:
33560176.
Article
191. Pelttari H, Valimaki MJ, Loyttyniemi E, Schalin-Jantti C. 2010; Post-ablative serum thyroglobulin is an independent predictor of recurrence in low-risk differentiated thyroid carcinoma: a 16-year follow-up study. Eur J Endocrinol. 163(5):757–63. DOI:
10.1530/EJE-10-0553. PMID:
20813788.
Article
192. Webb RC, Howard RS, Stojadinovic A, Gaitonde DY, Wallace MK, Ahmed J, et al. 2012; The utility of serum thyroglobulin measurement at the time of remnant ablation for predicting disease-free status in patients with differentiated thyroid cancer: a meta-analysis involving 3947 patients. J Clin Endocrinol Metab. 97(8):2754–63. DOI:
10.1210/jc.2012-1533. PMID:
22639291.
Article
193. Giovanella L, Ceriani L, Suriano S, Ghelfo A, Maffioli M. 2008; Thyroglobulin measurement before rhTSH-aided 131I ablation in detecting metastases from differentiated thyroid carcinoma. Clin Endocrinol (Oxf). 69(4):659–63. DOI:
10.1111/j.1365-2265.2008.03244.x. PMID:
18363882.
194. Giovanella L, Ceriani L, Ghelfo A, Keller F. 2005; Thyroglobulin assay 4 weeks after thyroidectomy predicts outcome in low-risk papillary thyroid carcinoma. Clin Chem Lab Med. 43(8):843–7. DOI:
10.1515/CCLM.2005.142. PMID:
16201895.
Article
195. Phan HT, Jager PL, van der Wal JE, Sluiter WJ, Plukker JT, Dierckx RA, et al. 2008; The follow-up of patients with differentiated thyroid cancer and undetectable thyroglobulin (Tg) and Tg antibodies during ablation. Eur J Endocrinol. 158(1):77–83. DOI:
10.1530/EJE-07-0399. PMID:
18166820.
Article
196. Vaisman A, Orlov S, Yip J, Hu C, Lim T, Dowar M, et al. 2010; Application of post-surgical stimulated thyroglobulin for radioiodine remnant ablation selection in low-risk papillary thyroid carcinoma. Head Neck. 32(6):689–98. DOI:
10.1002/hed.21371. PMID:
20187016.
Article
197. Kim TY, Kim WB, Kim ES, Ryu JS, Yeo JS, Kim SC, et al. 2005; Serum thyroglobulin levels at the time of 131I remnant ablation just after thyroidectomy are useful for early prediction of clinical recurrence in low-risk patients with differentiated thyroid carcinoma. J Clin Endocrinol Metab. 90(3):1440–5. DOI:
10.1210/jc.2004-1771. PMID:
15613412.
198. Toubeau M, Touzery C, Arveux P, Chaplain G, Vaillant G, Berriolo A, et al. 2004; Predictive value for disease progression of serum thyroglobulin levels measured in the postoperative period and after (131)I ablation therapy in patients with differentiated thyroid cancer. J Nucl Med. 45(6):988–94.
199. Piccardo A, Arecco F, Puntoni M, Foppiani L, Cabria M, Corvisieri S, et al. 2013; Focus on high-risk DTC patients: high postoperative serum thyroglobulin level is a strong predictor of disease persistence and is associated to progression-free survival and overall survival. Clin Nucl Med. 38(1):18–24. DOI:
10.1097/RLU.0b013e318266d4d8. PMID:
23242039.
200. Polachek A, Hirsch D, Tzvetov G, Grozinsky-Glasberg S, Slutski I, Singer J, et al. 2011; Prognostic value of post-thyroidectomy thyroglobulin levels in patients with differentiated thyroid cancer. J Endocrinol Invest. 34(11):855–60.
201. Heemstra KA, Liu YY, Stokkel M, Kievit J, Corssmit E, Pereira AM, et al. 2007; Serum thyroglobulin concentrations predict disease-free remission and death in differentiated thyroid carcinoma. Clin Endocrinol (Oxf). 66(1):58–64. DOI:
10.1111/j.1365-2265.2006.02685.x. PMID:
17201802.
Article
202. Lin JD, Huang MJ, Hsu BR, Chao TC, Hsueh C, Liu FH, et al. 2002; Significance of postoperative serum thyroglobulin levels in patients with papillary and follicular thyroid carcinomas. J Surg Oncol. 80(1):45–51. DOI:
10.1002/jso.10089. PMID:
11967907.
Article
203. Alzahrani AS, Al Mandil M, Chaudhary MA, Ahmed M, Mohammed GE. 2002; Frequency and predictive factors of malignancy in residual thyroid tissue and cervical lymph nodes after partial thyroidectomy for differentiated thyroid cancer. Surgery. 131(4):443–9. DOI:
10.1067/msy.2002.122377. PMID:
11935135.
Article
204. Vaisman F, Momesso D, Bulzico DA, Pessoa CH, da Cruz MD, Dias F, et al. 2013; Thyroid lobectomy is associated with excellent clinical outcomes in properly selected differentiated thyroid cancer patients with primary tumors greater than 1 cm. J Thyroid Res. 2013:398194. DOI:
10.1155/2013/398194. PMID:
24455413. PMCID:
PMC3884614.
205. Durante C, Montesano T, Attard M, Torlontano M, Monzani F, Costante G, et al. 2012; Long-term surveillance of papillary thyroid cancer patients who do not undergo postoperative radioiodine remnant ablation: is there a role for serum thyroglobulin measurement? J Clin Endocrinol Metab. 97(8):2748–53. DOI:
10.1210/jc.2012-1123. PMID:
22679061.
Article
206. Janovsky CC, Maciel RM, Camacho CP, Padovani RP, Nakabashi CC, Yang JH, et al. 2016; A prospective study showing an excellent response of patients with low-risk differentiated thyroid cancer who did not undergo radioiodine remnant ablation after total thyroidectomy. Eur Thyroid J. 5(1):44–9. DOI:
10.1159/000442048. PMID:
27099838. PMCID:
PMC4836168.
Article
207. Matrone A, Faranda A, Latrofa F, Gambale C, Stefani Donati D, Molinaro E, et al. 2020; Thyroglobulin changes are highly dependent on TSH in low-risk DTC patients not treated with radioiodine. J Clin Endocrinol Metab. 105(8):dgaa297. DOI:
10.1210/clinem/dgaa297. PMID:
32453405.
Article
208. Chou R, Dana T, Brent GA, Goldner W, Haymart M, Leung AM, et al. 2022; Serum thyroglobulin measurement following surgery without radioactive iodine for differentiated thyroid cancer: a systematic review. Thyroid. 32(6):613–39. DOI:
10.1089/thy.2021.0666. PMID:
35412871.
Article
210. Moon S, Song YS, Kim YA, Lim JA, Cho SW, Moon JH, et al. 2017; Effects of coexistent BRAF(V600E) and TERT promoter mutations on poor clinical outcomes in papillary thyroid cancer: a meta-analysis. Thyroid. 27(5):651–60. DOI:
10.1089/thy.2016.0350. PMID:
28181854.
Article
211. Vuong HG, Altibi AMA, Duong UNP, Hassell L. 2017; Prognostic implication of BRAF and TERT promoter mutation combination in papillary thyroid carcinoma-a meta-analysis. Clin Endocrinol (Oxf). 87(5):411–7. DOI:
10.1111/cen.13413. PMID:
28666074.
212. Song YS, Lim JA, Choi H, Won JK, Moon JH, Cho SW, et al. 2016; Prognostic effects of TERT promoter mutations are enhanced by coexistence with BRAF or RAS mutations and strengthen the risk prediction by the ATA or TNM staging system in differentiated thyroid cancer patients. Cancer. 122(9):1370–9. DOI:
10.1002/cncr.29934. PMID:
26969876.
Article
213. Liu R, Bishop J, Zhu G, Zhang T, Ladenson PW, Xing M. 2017; Mortality risk stratification by combining BRAF V600E and TERT promoter mutations in papillary thyroid cancer: genetic duet of BRAF and TERT promoter mutations in thyroid cancer mortality. JAMA Oncol. 3(2):202–8. DOI:
10.1001/jamaoncol.2016.3288. PMID:
27581851.
Article
214. Ebina A, Togashi Y, Baba S, Sato Y, Sakata S, Ishikawa M, et al. 2020; TERT promoter mutation and extent of thyroidectomy in patients with 1-4 cm intrathyroidal papillary carcinoma. Cancers (Basel). 12(8):2115. DOI:
10.3390/cancers12082115. PMID:
32751594. PMCID:
PMC7464551.
Article
215. Bournaud C, Descotes F, Decaussin-Petrucci M, Berthiller J, de la Fouchardiere C, Giraudet AL, et al. 2019; TERT promoter mutations identify a high-risk group in metastasis-free advanced thyroid carcinoma. Eur J Cancer. 108:41–9. DOI:
10.1016/j.ejca.2018.12.003. PMID:
30648628.
Article
216. Kim SY, Kim T, Kim K, Bae JS, Kim JS, Jung CK. 2020; Highly prevalent BRAF V600E and low-frequency TERT promoter mutations underlie papillary thyroid carcinoma in Koreans. J Pathol Transl Med. 54(4):310–7. DOI:
10.4132/jptm.2020.05.12. PMID:
32527075. PMCID:
PMC7385264.
Article
217. Lee J, Ha EJ, Roh J, Kim HK. 2021; Presence of TERT +/- BRAF V600E mutation is not a risk factor for the clinical management of patients with papillary thyroid microcarcinoma. Surgery. 170(3):743–7. DOI:
10.1016/j.surg.2021.03.056. PMID:
33952391.
Article
218. Choi YS, Choi SW, Yi JW. 2021; Prospective analysis of TERT promoter mutations in papillary thyroid carcinoma at a single institution. J Clin Med. 10(10):2179. DOI:
10.3390/jcm10102179. PMID:
34070093. PMCID:
PMC8158380.
Article
219. Yang H, Park H, Ryu HJ, Heo J, Kim JS, Oh YL, et al. 2022; Frequency of TERT promoter mutations in real-world analysis of 2,092 thyroid carcinoma patients. Endocrinol Metab (Seoul). 37(4):652–63. DOI:
10.3803/EnM.2022.1477. PMID:
35864728. PMCID:
PMC9449103.
220. Kim SY, Jung CK. Frequency of TERT promoter mutations in real-world analysis of 2,092 thyroid carcinoma patients (Endocrinol Metab 2022;37:652-63, Heera Yang et al.). Endocrinol Metab (Seoul). 2022; 37(6):947–8. DOI:
10.3803/EnM.2022.1596. PMID:
36353807. PMCID:
PMC9816498.
Article
221. Chakravarty D, Santos E, Ryder M, Knauf JA, Liao XH, West BL, et al. 2011; Small-molecule MAPK inhibitors restore radioiodine incorporation in mouse thyroid cancers with conditional BRAF activation. J Clin Invest. 121(12):4700–11. DOI:
10.1172/JCI46382. PMID:
22105174. PMCID:
PMC3225989.
Article
222. Luo Y, Jiang H, Xu W, Wang X, Ma B, Liao T, et al. 2020; Clinical, pathological, and molecular characteristics correlating to the occurrence of radioiodine refractory differentiated thyroid carcinoma: a systematic review and meta-analysis. Front Oncol. 10:549882. DOI:
10.3389/fonc.2020.549882. PMID:
33117686. PMCID:
PMC7561400.
Article