2. Wang S, Wang X, Shen Y, He B, Zhao X, Cheung PWH, et al. An ensemble-based densely-connected deep learning system for
assessment of skeletal maturity. IEEE Trans Syst Man Cybern Syst. 2020; 52(1):426–437. DOI:
10.1109/TSMC.2020.2997852.
3. Ferrillo M, Curci C, Roccuzzo A, Migliario M, Invernizzi M, de Sire A. Reliability of cervical vertebral maturation compared to
hand-wrist for skeletal maturation assessment in growing subjects: a
systematic review. J Back Musculoskelet Rehabil. 2021; 34(6):925–936. DOI:
10.3233/BMR-210003. PMID:
33998532.
5. Ahn KS, Bae B, Jang WY, Lee JH, Oh S, Kim BH, et al. Assessment of rapidly advancing bone age during puberty on elbow
radiographs using a deep neural network model. Eur Radiol. 2021; 31(12):8947–8955. DOI:
10.1007/s00330-021-08096-1. PMID:
34115194.
6. Maratova K, Zemkova D, Sedlak P, Pavlikova M, Amaratunga SA, Krasnicanova H, et al. A comprehensive validation study of the latest version of
BoneXpert on a large cohort of Caucasian children and
adolescents. Front Endocrinol. 2023; 14:1130580. DOI:
10.3389/fendo.2023.1130580. PMID:
37033216. PMCID:
PMC10079872.
7. Son SJ, Song Y, Kim N, Do Y, Kwak N, Lee MS, et al. TW3-based fully automated bone age assessment system using deep
neural networks. IEEE Access. 2019; 7:33346–33358. DOI:
10.1109/ACCESS.2019.2903131.
8. Gilsanz V, Ratib O. Hand bone age: a digital atlas of skeletal maturity. Berlin: Springer;2005.
9. Kim PH, Yoon HM, Kim JR, Hwang JY, Choi JH, Hwang J, et al. Bone age assessment using artificial intelligence in Korean
pediatric population: a comparison of deep-learning models trained with
healthy chronological and Greulich-Pyle ages as labels. Korean J Radiol. 2023; 24(11):1151–1163. DOI:
10.3348/kjr.2023.0092. PMID:
37899524. PMCID:
PMC10613838.