1. Brown CJ, Abbas PJ, Gantz B. Electrically evoked whole-nerve action potentials: data from human cochlear implant users. J Acoust Soc Am. 1990; Sep. 88(3):1385–91.
Article
2. Brown CJ, Abbas PJ, Gantz BJ. Preliminary experience with neural response telemetry in the nucleus CI24M cochlear implant. Am J Otol. 1998; May. 19(3):320–7.
3. Starr A, Brackmann DE. Brain stem potentials evoked by electrical stimulation of the cochlea in human subjects. Ann Otol Rhinol Laryngol. 1979; Jul-Aug. 88(4 Pt 1):550–6.
Article
4. Chouard CH, Meyer B, Donadieu F. Auditory brainstem potentials in man evoked by electrical stimulation of the round window. Acta Otolaryngol. 1979; Mar-Apr. 87(3-4):287–93.
Article
5. van den Honert C, Stypulkowski PH. Characterization of the electrically evoked auditory brainstem response (ABR) in cats and humans. Hear Res. 1986; 21(2):109–26.
Article
6. Nikolopoulos TP, Mason SM, Gibbin KP, O’Donoghue GM. The prognostic value of promontory electric auditory brain stem response in pediatric cochlear implantation. Ear Hear. 2000; Jun. 21(3):236–41.
Article
7. Kileny PR, Zwolan TA. Pre-perioperative, transtympanic electrically evoked auditory brainstem response in children. Int J Audiol. 2004; Dec. 43 Suppl 1:S16–21.
8. Lassaletta L, Polak M, Huesers J, Diaz-Gomez M, Calvino M, VarelaNieto I, et al. Usefulness of electrical auditory brainstem responses to assess the functionality of the cochlear nerve using an intracochlear test electrode. Otol Neurotol. 2017; Dec. 38(10):e413–20.
Article
9. Fernandez NM, Vernetta CP, Garrido LC, Gomez MD, Perez CM. Electrically evoked auditory brainstem response over round window by bipolar stimulation. J Int Adv Otol. 2018; Dec. 14(3):370–4.
Article
10. Pau H, Gibson WP, Sanli H. Trans-tympanic electric auditory brainstem response (TT-EABR): the importance of the positioning of the stimulating electrode. Cochlear Implants Int. 2006; Dec. 7(4):183–7.
Article
11. Smith L, Simmons FB. Estimating eighth nerve survival by electrical stimulation. Ann Otol Rhinol Laryngol. 1983; Jan-Feb. 92(1 Pt 1):19–23.
Article
12. Hall RD. Estimation of surviving spiral ganglion cells in the deaf rat using the electrically evoked auditory brainstem response. Hear Res. 1990; Nov. 49(1-3):155–68.
Article
13. Miller CA, Abbas PJ, Robinson BK. The use of long-duration current pulses to assess nerve survival. Hear Res. 1994; Jul. 78(1):11–26.
Article
14. Miller CA, Abbas PJ, Brown CJ. Electrically evoked auditory brainstem response to stimulation of different sites in the cochlea. Hear Res. 1993; Apr. 66(2):130–42.
Article
15. Shepherd RK, Hatsushika S, Clark GM. Electrical stimulation of the auditory nerve: the effect of electrode position on neural excitation. Hear Res. 1993; Mar. 66(1):108–20.
Article
16. Abbas PJ, Brown CJ, Shallop JK, Firszt JB, Hughes ML, Hong SH, et al. Summary of results using the nucleus CI24M implant to record the electrically evoked compound action potential. Ear Hear. 1999; Feb. 20(1):45–59.
Article
17. Snyder RL, Middlebrooks JC, Bonham BH. Cochlear implant electrode configuration effects on activation threshold and tonotopic selectivity. Hear Res. 2008; Jan. 235(1-2):23–38.
Article
18. Ramekers D, Versnel H, Strahl SB, Smeets EM, Klis SF, Grolman W. Auditory-nerve responses to varied inter-phase gap and phase duration of the electric pulse stimulus as predictors for neuronal degeneration. J Assoc Res Otolaryngol. 2014; Apr. 15(2):187–202.
Article
19. Muller M. Frequency representation in the rat cochlea. Hear Res. 1991; Feb. 51(2):247–54.
Article
20. Kim JR, Abbas PJ, Brown CJ, Etler CP, O’Brien S, Kim LS. The relationship between electrically evoked compound action potential and speech perception: a study in cochlear implant users with short electrode array. Otol Neurotol. 2010; Sep. 31(7):1041–8.
21. Nehme A, El Zir E, Moukarzel N, Haidar H, Vanpoucke F, Arnold L. Measures of the electrically evoked compound action potential threshold and slope in HiRes 90K(TM) users. Cochlear Implants Int. 2014; Jan. 15(1):53–60.
22. Dziemba OC, Aristeidou A, Brill S. Slope of electrically evoked compound action potential amplitude growth function is site-dependent. Cochlear Implants Int. 2021; May. 22(3):136–47.
Article
23. Kuo SC, Gibson WP. The role of the promontory stimulation test in cochlear implantation. Cochlear Implants Int. 2002; Mar. 3(1):19–28.
Article
24. Lenarz T, Hoth S. Comparison of different methods of preoperative electrical testing in cochlear implant patients. In : In : Banfai P, editor. International cochlear implant symposium; Bermann;1987. p. 97–100.
25. Smoorenburg GF, Van Olphen AF. Pre-operative electrostimulation of the auditory nerve and postoperative results with the house/3m cochlear implant. In : International cochlear implant symposium; Test Promontoria;1987. Düren (west Germany).
26. Kileny PR, Zwolan TA, Zimmerman-Phillips S, Kemink JL. A comparison of round-window and transtympanic promontory electric stimulation in cochlear implant candidates. Ear Hear. 1992; Oct. 13(5):294–9.
Article
27. Cousillas H, Patuzzi RB, Johnstone BM. Post-stimulatory effects of direct current stimulation of the cochlea on auditory nerve activity. Hear Res. 1988; Oct. 36(1):21–39.
Article
28. Laurikainen E, Kanninen P, Aho H, Saukko P. The anatomy of the human promontory for laser Doppler flowmetry. Eur Arch Otorhinolaryngol. 1997; 254(6):264–8.
Article