Investig Clin Urol.  2024 May;65(3):240-247. 10.4111/icu.20230302.

Inflammation indexes and machine-learning algorithm in predicting urethroplasty success

Affiliations
  • 1Urology Clinic, Haydarpasa Numune SUAM, University of Health Sciences, Istanbul, Türkiye
  • 2Urology Clinic, Bakırkoy Dr. Sadi Konuk SUAM, University of Health Sciences, Istanbul, Türkiye

Abstract

Purpose
To assess the predictive capability of hematological inflammatory markers for urethral stricture recurrence after primary urethroplasty and to compare traditional statistical methods with a machine-learning-based artificial intelligence algorithm.
Materials and Methods
Two hundred eighty-seven patients who underwent primary urethroplasty were scanned. Ages, smoking status, comorbidities, hematological inflammatory parameters (neutrophil-lymphocyte ratios, platelet-lymphocyte ratios [PLR], systemic immune-inflammation indexes [SII], and pan-immune-inflammation values [PIV]), stricture characteristics, history of previous direct-visual internal urethrotomy, urethroplasty techniques, and grafts/flaps placements were collected. Patients were followed up for one year for recurrence and grouped accordingly. Univariate and multivariate logistic regression analyses were conducted to create a predictive model. Additionally, a machine-learning-based logistic regression analysis was implemented to compare predictive performances. p<0.05 was considered statistically significant.
Results
Comparative analysis between the groups revealed statistically significant differences in stricture length (p=0.003), localization (p=0.027), lymphocyte counts (p=0.008), PLR (p=0.003), SII (p=0.003), and PIV (p=0.001). In multivariate analysis, stricture length (odds ratio [OR] 1.230, 95% confidence interval [CI] 1.142–1.539, p<0.0001) and PIV (OR 1.002, 95% CI 1.000–1.003, p=0.039) were identified as significant predictors of recurrence. Classical logistic regression model exhibited a sensitivity of 0.76, specificity of 0.43 with an area under curve (AUC) of 0.65. However, the machine-learning algorithm outperformed traditional methods achieving a sensitivity of 0.80, specificity of 0.76 with a higher AUC of 0.82.
Conclusions
PIV and machine-learning algorithms shows promise on predicting urethroplasty outcomes, potentially leading to develop possible nomograms. Evolving machine-learning algorithms will contribute to more personalized and accurate approaches in managing urethral stricture.

Keyword

Artificial intelligence; Biomarkers; Urethra; Urethral stricture
Full Text Links
  • ICU
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr