Korean J Pain.  2024 Apr;37(2):91-106. 10.3344/kjp.23284.

The complement system: a potential target for the comorbidity of chronic pain and depression

Affiliations
  • 1Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
  • 2Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
  • 3Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
  • 4Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China

Abstract

The mechanisms of the chronic pain and depression comorbidity have gained significant attention in recent years. The complement system, widely involved in central nervous system diseases and mediating non-specific immune mechanisms in the body, remains incompletely understood in its involvement in the comorbidity mechanisms of chronic pain and depression. This review aims to consolidate the findings from recent studies on the complement system in chronic pain and depression, proposing that it may serve as a promising shared therapeutic target for both conditions. Complement proteins C1q, C3, C5, as well as their cleavage products C3a and C5a, along with the associated receptors C3aR, CR3, and C5aR, are believed to have significant implications in the comorbid mechanism. The primary potential mechanisms encompass the involvement of the complement cascade C1q/C3-CR3 in the activation of microglia and synaptic pruning in the amygdala and hippocampus, the role of complement cascade C3/C3a-C3aR in the interaction between astrocytes and microglia, leading to synaptic pruning, and the C3a-C3aR axis and C5a-C5aR axis to trigger inflammation within the central nervous system. We focus on studies on the role of the complement system in the comorbid mechanisms of chronic pain and depression.

Keyword

Astrocytes; Central Nervous System; Chronic Pain; Complement System Proteins; Comorbidity; Depression; Inflammation; Microglia; Neuronal Plasticity

Figure

  • Fig. 1 Activation pathways of the complement system. The complement system is activated by the classical, lectin, or alternative pathways. The initiation of the classical pathway involves the C1 protein complex, which consists of C1q, C1r, and C1s. Upon activation, C1s cleaves C4 and C2. In the lectin pathway, activation occurs when mannose-binding lectin (MBL) encounters a pathogenic carbohydrate motif. Subsequently, MBL associates with MASP-1 and MASP-2, leading to the cleavage of C4 and C2. The resulting cleavage products induce the formation of C3 convertase C4bC2a, which subsequently splits C3 into C3a and C3b. C3a has the ability to induce the chemotaxis and activation of microglia via C3aR. Additionally, C3b can undergo cleavage to form iC3b, which is recognized by microglial cells through complement receptor 3 (CR3), thereby promoting activation. Furthermore, the production of C3b can facilitate the generation of C5 convertase (C4bC2aC3b, C3bBbC3b). C5 can also be cleaved into C5a and C5b, with C5a further promoting the chemotaxis and activation of glial cells through C5aR. Another pathway involves the spontaneous hydrolysis of C3 to C3 (H2O). All three pathways result in the generation of convertases, which subsequently stimulate the production of the primary components of the complement system, namely anaphylatoxins (C4a, C3a, and C5a), membrane attack complexes, and opsonins (C3b). Allergic toxins initiate pro-inflammatory signaling, while C5b associates with C6, C7, C8, and C9 to form membrane attack complexes (MAC), ultimately resulting in cell cleavage.

  • Fig. 2 Potential mechanisms by glial cell synaptic pruning mediated by the complement system in chronic pain and depression comorbidity. Complement cascade C1q/C3-CR3 pathway. The amygdala and hippocampus exhibit heightened activation of complement C1q and C3 in response to stimuli associated with chronic pain and depression. This activation facilitates the differentiation of microglial cells into a pro-inflammatory M1 phenotype. Complement C3 undergoes lysis, leading to the generation of C3b and iC3b. This iC3b acts as a marker for synapses, facilitating their identification by the CR3 receptor on pro-inflammatory M1 microglial cells, potentially resulting in synaptic pruning. Notably, there is a reduction in the levels of synaptic proteins SYP and PSD95, as well as a decrease in the secretion of the VGlut2. The BonT/A can counteract these changes by inhibiting the activation of C1q and C3, thereby reducing synaptic pruning in microglia. Complement cascade C3/C3a-C3aR signals pathway. In the presence of LPS or chronic stress, neurotoxic A1 astrocytes in the prefrontal cortex become activated, resulting in an increase in complement C3 and C3a levels. Specifically, C3a targets the C3aR receptor on microglial cells, promoting their polarization towards an M1 phenotype. This activation further stimulates the STAT3 and NF-κB pathways in microglial cells. This amplifies synaptic pruning in microglia and hUC-MSCs, IL-1R, and Gynostemma inhibit and improve these processes. PSD95: postsynaptic density protein 95, VGlut2: vesicular glutamate transporter-2, BoNT/A: botulinum neurotoxin A, LPS: lipopolysaccharide, STAT3: signal transducer and activator of transcription 3, NF-κB: nuclear factor-kappa B, hUC-MSCs: human umbilical cord mesenchymal stem cells.

  • Fig. 3 Potential mechanisms in which neuroinflammation is mediated by the complement system is involved in the comorbidity of chronic pain and depression. Complement cascade C3a-C3aR pathway. Under the influence of injury and inflammation, astrocytes have the ability to enhance the production of complement C3a. This molecule then interacts with the receptor C3aR found on microglia, resulting in the promotion of M1 type polarization of microglia in specific regions of the central nervous system, including the dorsal horn of the spinal cord, dorsal root neurons in the spinal cord, hippocampus, and prefrontal cortex. Consequently, this process leads to an upregulation of the expression of pro-inflammatory cytokines such as TNF-α, IL-1β, and NLRP3 in the hippocampus, as well as an elevation in the levels of the inflammatory cytokine IL-1β in the prefrontal cortex. These events ultimately induce neuroinflammation, which is closely associated with the development of chronic pain and depression. Complement cascade C5a-C5aR pathway. Response to injury and inflammation, astrocytes have the capacity to elevate the expression of complement C5a. The interaction between C5a and its receptor (C5aR) can subsequently enhance the secretion of pro-inflammatory factors via the activation of p38MAPK and ERK1/2 signaling pathways. This process further facilitates the M1-type polarization of microglia in the spinal dorsal horn and dorsal root ganglion (DRG), thereby inducing neuroinflammation. Ultimately, these events contribute to the development of chronic pain and depression. TNF-α: tumor necrosis factor-α, IL-1β: interleukin-1, NLRP3: NOD-like receptor protein 3.


Reference

1. Raja SN, Carr DB, Cohen M, Finnerup NB, Flor H, Gibson S, et al. 2020; The revised International Association for the Study of Pain definition of pain: concepts, challenges, and compromises. Pain. 161:1976–82. DOI: 10.1097/j.pain.0000000000001939. PMID: 32694387. PMCID: PMC7680716.
Article
2. Barroso J, Branco P, Apkarian AV. 2021; Brain mechanisms of chronic pain: critical role of translational approach. Transl Res. 238:76–89. DOI: 10.1016/j.trsl.2021.06.004. PMID: 34182187. PMCID: PMC8572168.
Article
3. Attal N, Lanteri-Minet M, Laurent B, Fermanian J, Bouhassira D. 2011; The specific disease burden of neuropathic pain: results of a French nationwide survey. Pain. 152:2836–43. DOI: 10.1016/j.pain.2011.09.014. PMID: 22019149.
Article
4. Rizvi SJ, Gandhi W, Salomons T. 2021; Reward processing as a common diathesis for chronic pain and depression. Neurosci Biobehav Rev. 127:749–60. DOI: 10.1016/j.neubiorev.2021.04.033. PMID: 33951413.
Article
5. Zhou W, Jin Y, Meng Q, Zhu X, Bai T, Tian Y, et al. 2019; A neural circuit for comorbid depressive symptoms in chronic pain. Nat Neurosci. 22:1649–58. Erratum in: Nat Neurosci 2019; 22: 1945. DOI: 10.1038/s41593-019-0468-2. PMID: 31451801.
Article
6. Pillai A. 2022; Chronic stress and complement system in depression. Braz J Psychiatry. 44:366–7. DOI: 10.47626/1516-4446-2022-2463. PMID: 35729065. PMCID: PMC9375666.
Article
7. Perlmutter DH, Colten HR. 1986; Molecular immunobiology of complement biosynthesis: a model of single-cell control of effector-inhibitor balance. Annu Rev Immunol. 4:231–51. DOI: 10.1146/annurev.iy.04.040186.001311. PMID: 3518744.
Article
8. Singhrao SK, Neal JW, Rushmere NK, Morgan BP, Gasque P. 1999; Differential expression of individual complement regulators in the brain and choroid plexus. Lab Invest. 79:1247–59.
9. Zhang W, Chen Y, Pei H. 2023; C1q and central nervous system disorders. Front Immunol. 14:1145649. DOI: 10.3389/fimmu.2023.1145649. PMID: 37033981. PMCID: PMC10076750.
Article
10. Warwick CA, Keyes AL, Woodruff TM, Usachev YM. 2021; The complement cascade in the regulation of neuroinflammation, nociceptive sensitization, and pain. J Biol Chem. 297:101085. DOI: 10.1016/j.jbc.2021.101085. PMID: 34411562. PMCID: PMC8446806.
Article
11. Tong Y, Liu J, Yang T, Wang J, Zhao T, Kang Y, et al. 2022; Association of pain with plasma C5a in patients with neuromyelitis optica spectrum disorders during remission. Neuropsychiatr Dis Treat. 18:1039–46. DOI: 10.2147/NDT.S359620. PMID: 35615424. PMCID: PMC9124695.
Article
12. Togha M, Rahimi P, Farajzadeh A, Ghorbani Z, Faridi N, Zahra Bathaie S. 2022; Proteomics analysis revealed the presence of inflammatory and oxidative stress markers in the plasma of migraine patients during the pain period. Brain Res. 1797:148100. DOI: 10.1016/j.brainres.2022.148100. PMID: 36174672.
Article
13. Yi D, Wang K, Zhu B, Li S, Liu X. 2021; Identification of neuropathic pain-associated genes and pathways via random walk with restart algorithm. J Neurosurg Sci. 65:414–20. DOI: 10.23736/S0390-5616.20.04920-6. PMID: 32536116.
Article
14. Wang K, Yi D, Yu Z, Zhu B, Li S, Liu X. 2020; Identification of the hub genes related to nerve injury-induced neuropathic pain. Front Neurosci. 14:488. DOI: 10.3389/fnins.2020.00488. PMID: 32508579. PMCID: PMC7251260.
Article
15. Zhou J, Li J, Ma L, Cao S. 2020; Zoster sine herpete: a review. Korean J Pain. 33:208–15. DOI: 10.3344/kjp.2020.33.3.208. PMID: 32606265. PMCID: PMC7336347.
Article
16. Peng Z, Guo J, Zhang Y, Guo X, Huang W, Li Y, et al. 2022; Development of a model for predicting the effectiveness of pulsed radiofrequency on zoster-associated pain. Pain Ther. 11:253–67. DOI: 10.1007/s40122-022-00355-3. PMID: 35094299. PMCID: PMC8861232.
Article
17. Reddy PV, Talukdar PM, Subbanna M, Bhargav PH, Arasappa R, Venkatasubramanian G, et al. 2023; Multiple complement pathway-related proteins might regulate immunopathogenesis of major depressive disorder. Clin Psychopharmacol Neurosci. 21:313–9. DOI: 10.9758/cpn.2023.21.2.313. PMID: 37119224. PMCID: PMC10157013.
Article
18. Luo X, Fang Z, Lin L, Xu H, Huang Q, Zhang H. 2022; Plasma complement C3 and C3a are increased in major depressive disorder independent of childhood trauma. BMC Psychiatry. 22:741. DOI: 10.1186/s12888-022-04410-3. PMID: 36447174. PMCID: PMC9706857.
Article
19. Yao Q, Li Y. 2020; Increased serum levels of complement C1q in major depressive disorder. J Psychosom Res. 133:110105. DOI: 10.1016/j.jpsychores.2020.110105. PMID: 32272297.
Article
20. Crider A, Feng T, Pandya CD, Davis T, Nair A, Ahmed AO, et al. 2018; Complement component 3a receptor deficiency attenuates chronic stress-induced monocyte infiltration and depressive-like behavior. Brain Behav Immun. 70:246–56. DOI: 10.1016/j.bbi.2018.03.004. PMID: 29518530. PMCID: PMC5967612.
Article
21. Westacott LJ, Humby T, Haan N, Brain SA, Bush EL, Toneva M, et al. 2022; Complement C3 and C3aR mediate different aspects of emotional behaviours; relevance to risk for psychiatric disorder. Brain Behav Immun. 99:70–82. DOI: 10.1016/j.bbi.2021.09.005. PMID: 34543680.
Article
22. Tripathi A, Whitehead C, Surrao K, Pillai A, Madeshiya A, Li Y, et al. 2021; Type 1 interferon mediates chronic stress-induced neuroinflammation and behavioral deficits via complement component 3-dependent pathway. Mol Psychiatry. 26:3043–59. DOI: 10.1038/s41380-021-01065-6. PMID: 33833372. PMCID: PMC8497654.
Article
23. Griffin RS, Costigan M, Brenner GJ, Ma CH, Scholz J, Moss A, et al. 2007; Complement induction in spinal cord microglia results in anaphylatoxin C5a-mediated pain hypersensitivity. J Neurosci. 27:8699–708. DOI: 10.1523/JNEUROSCI.2018-07.2007. PMID: 17687047. PMCID: PMC6672952.
Article
24. Davoust N, Jones J, Stahel PF, Ames RS, Barnum SR. 1999; Receptor for the C3a anaphylatoxin is expressed by neurons and glial cells. Glia. 26:201–11. DOI: 10.1002/(SICI)1098-1136(199905)26:3<201::AID-GLIA2>3.0.CO;2-M.
Article
25. Zhang MM, Guo MX, Zhang QP, Chen XQ, Li NZ, Liu Q, et al. 2022; IL-1R/C3aR signaling regulates synaptic pruning in the prefrontal cortex of depression. Cell Biosci. 12:90. DOI: 10.1186/s13578-022-00832-4. PMID: 35715851. PMCID: PMC9205119.
Article
26. Quadros AU, Cunha TM. 2016; C5a and pain development: an old molecule, a new target. Pharmacol Res. 112:58–67. DOI: 10.1016/j.phrs.2016.02.004. PMID: 26855316.
Article
27. Yasuda M, Nagappan-Chettiar S, Johnson-Venkatesh EM, Umemori H. 2021; An activity-dependent determinant of synapse elimination in the mammalian brain. Neuron. 109:1333–49.e6. DOI: 10.1016/j.neuron.2021.03.006. PMID: 33770504. PMCID: PMC8068677.
Article
28. Soteros BM, Sia GM. 2022; Complement and microglia dependent synapse elimination in brain development. WIREs Mech Dis. 14:e1545. DOI: 10.1002/wsbm.1545. PMID: 34738335. PMCID: PMC9066608.
Article
29. De Leo JA, Tawfik VL, LaCroix-Fralish ML. 2006; The tetrapartite synapse: path to CNS sensitization and chronic pain. Pain. 122:17–21. DOI: 10.1016/j.pain.2006.02.034. PMID: 16564626.
Article
30. Deng SL, Chen JG, Wang F. 2020; Microglia: a central player in depression. Curr Med Sci. 40:391–400. DOI: 10.1007/s11596-020-2193-1. PMID: 32681244.
Article
31. Lawal O, Ulloa Severino FP, Eroglu C. 2022; The role of astrocyte structural plasticity in regulating neural circuit function and behavior. Glia. 70:1467–83. DOI: 10.1002/glia.24191. PMID: 35535566. PMCID: PMC9233050.
Article
32. Dejanovic B, Wu T, Tsai MC, Graykowski D, Gandham VD, Rose CM, et al. 2022; Complement C1q-dependent excitatory and inhibitory synapse elimination by astrocytes and microglia in Alzheimer's disease mouse models. Nat Aging. 2:837–50. DOI: 10.1038/s43587-022-00281-1. PMID: 37118504. PMCID: PMC10154216.
Article
33. Filipello F, Morini R, Corradini I, Zerbi V, Canzi A, Michalski B, et al. 2018; The microglial innate immune receptor TREM2 is required for synapse elimination and normal brain connectivity. Immunity. 48:979–91.e8. DOI: 10.1016/j.immuni.2018.04.016. PMID: 29752066.
Article
34. Schecter RW, Maher EE, Welsh CA, Stevens B, Erisir A, Bear MF. 2017; Experience-dependent synaptic plasticity in V1 occurs without microglial CX3CR1. J Neurosci. 37:10541–53. DOI: 10.1523/JNEUROSCI.2679-16.2017. PMID: 28951447. PMCID: PMC5666579.
Article
35. Chung WS, Clarke LE, Wang GX, Stafford BK, Sher A, Chakraborty C, et al. 2013; Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways. Nature. 504:394–400. DOI: 10.1038/nature12776. PMID: 24270812. PMCID: PMC3969024.
Article
36. Lee JH, Kim JY, Noh S, Lee H, Lee SY, Mun JY, et al. 2021; Astrocytes phagocytose adult hippocampal synapses for circuit homeostasis. Nature. 590:612–7. DOI: 10.1038/s41586-020-03060-3. PMID: 33361813.
Article
37. Brown GC, Neher JJ. 2014; Microglial phagocytosis of live neurons. Nat Rev Neurosci. 15:209–16. DOI: 10.1038/nrn3710. PMID: 24646669.
Article
38. Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS, Nouri N, et al. 2007; The classical complement cascade mediates CNS synapse elimination. Cell. 131:1164–78. DOI: 10.1016/j.cell.2007.10.036. PMID: 18083105.
Article
39. Cong Q, Soteros BM, Wollet M, Kim JH, Sia GM. 2020; The endogenous neuronal complement inhibitor SRPX2 protects against complement-mediated synapse elimination during development. Nat Neurosci. 23:1067–78. DOI: 10.1038/s41593-020-0672-0. PMID: 32661396. PMCID: PMC7483802.
Article
40. Lehrman EK, Wilton DK, Litvina EY, Welsh CA, Chang ST, Frouin A, et al. 2018; CD47 protects synapses from excess microglia-mediated pruning during development. Neuron. 100:120–34.e6. DOI: 10.1016/j.neuron.2018.09.017. PMID: 30308165. PMCID: PMC6314207.
Article
41. Lian H, Litvinchuk A, Chiang AC, Aithmitti N, Jankowsky JL, Zheng H. 2016; Astrocyte-microglia cross talk through complement activation modulates amyloid pathology in mouse models of Alzheimer's disease. J Neurosci. 36:577–89. DOI: 10.1523/JNEUROSCI.2117-15.2016. PMID: 26758846. PMCID: PMC4710776.
Article
42. Park SY, Kim IS. 2017; Engulfment signals and the phagocytic machinery for apoptotic cell clearance. Exp Mol Med. 49:e331. DOI: 10.1038/emm.2017.52. PMID: 28496201. PMCID: PMC5454446.
Article
43. Fonseca MI, Chu SH, Hernandez MX, Fang MJ, Modarresi L, Selvan P, et al. 2017; Cell-specific deletion of C1qa identifies microglia as the dominant source of C1q in mouse brain. J Neuroinflammation. 14:48. DOI: 10.1186/s12974-017-0814-9. PMID: 28264694. PMCID: PMC5340039.
Article
44. Lu JH, Teh BK, Wang Ld, Wang YN, Tan YS, Lai MC, et al. 2008; The classical and regulatory functions of C1q in immunity and autoimmunity. Cell Mol Immunol. 5:9–21. DOI: 10.1038/cmi.2008.2. PMID: 18318990. PMCID: PMC4652917.
Article
45. Györffy BA, Kun J, Török G, Bulyáki É, Borhegyi Z, Gulyássy P, et al. 2018; Local apoptotic-like mechanisms underlie complement-mediated synaptic pruning. Proc Natl Acad Sci U S A. 115:6303–8. DOI: 10.1073/pnas.1722613115. PMID: 29844190. PMCID: PMC6004452.
Article
46. Dunkelberger JR, Song WC. 2010; Complement and its role in innate and adaptive immune responses. Cell Res. 20:34–50. DOI: 10.1038/cr.2009.139. PMID: 20010915.
Article
47. Hong S, Beja-Glasser VF, Nfonoyim BM, Frouin A, Li S, Ramakrishnan S, et al. 2016; Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science. 352:712–6. DOI: 10.1126/science.aad8373. PMID: 27033548. PMCID: PMC5094372.
Article
48. Wang R, Wang Q, Xie T, Guo K. 2021; The role of glial cell activation mediated by complement system C1q/C3 in depression-like behavior in mice. J SUN Yat-sen Univ (Med Sci). 42:328–37.
49. Li Y, Yin Q, Li Q, Huo AR, Shen TT, Cao JQ, et al. 2023; Botulinum neurotoxin A ameliorates depressive-like behavior in a reserpine-induced Parkinson's disease mouse model via suppressing hippocampal microglial engulfment and neuroinflammation. Acta Pharmacol Sin. 44:1322–36. DOI: 10.1038/s41401-023-01058-x. PMID: 36765267. PMCID: PMC10310724.
Article
50. Yuan T, Orock A, Greenwood-Van Meerveld B. 2021; Amygdala microglia modify neuronal plasticity via complement C1q/C3-CR3 signaling and contribute to visceral pain in a rat model. Am J Physiol Gastrointest Liver Physiol. 320:G1081–92. DOI: 10.1152/ajpgi.00123.2021. PMID: 33949202.
Article
51. Coulthard LG, Hawksworth OA, Conroy J, Lee JD, Woodruff TM. 2018; Complement C3a receptor modulates embryonic neural progenitor cell proliferation and cognitive performance. Mol Immunol. 101:176–81. DOI: 10.1016/j.molimm.2018.06.271. PMID: 30449309.
Article
52. Coulthard LG, Woodruff TM. 2015; Is the complement activation product C3a a proinflammatory molecule? Re-evaluating the evidence and the myth. J Immunol. 194:3542–8. DOI: 10.4049/jimmunol.1403068. PMID: 25848071.
Article
53. Li J, Wang H, Du C, Jin X, Geng Y, Han B, et al. 2020; hUC-MSCs ameliorated CUMS-induced depression by modulating complement C3 signaling-mediated microglial polarization during astrocyte-microglia crosstalk. Brain Res Bull. 163:109–19. DOI: 10.1016/j.brainresbull.2020.07.004. PMID: 32681971.
Article
54. Zhang MM, Huo GM, Cheng J, Zhang QP, Li NZ, Guo MX, et al. 2022; Gypenoside XVII, an active ingredient from Gynostemma pentaphyllum, inhibits C3aR-associated synaptic pruning in stressed mice. Nutrients. 14:2418. DOI: 10.3390/nu14122418. PMID: 35745148. PMCID: PMC9228113.
Article
55. Nie F, Wang J, Su D, Shi Y, Chen J, Wang H, et al. 2013; Abnormal activation of complement C3 in the spinal dorsal horn is closely associated with progression of neuropathic pain. Int J Mol Med. 31:1333–42. DOI: 10.3892/ijmm.2013.1344. PMID: 23588254.
Article
56. Mou W, Ma L, Zhu A, Cui H, Huang Y. 2022; Astrocyte-microglia interaction through C3/C3aR pathway modulates neuropathic pain in rats model of chronic constriction injury. Mol Pain. 18:17448069221140532. DOI: 10.1177/17448069221140532. PMID: 36341694. PMCID: PMC9669679.
Article
57. Zhu A, Cui H, Su W, Liu C, Yu X, Huang Y. 2023; C3aR in astrocytes mediates post-thoracotomy pain by inducing A1 astrocytes in male rats. Biochim Biophys Acta Mol Basis Dis. 1869:166672. DOI: 10.1016/j.bbadis.2023.166672. PMID: 36871753.
Article
58. Andersen SL. 2022; Neuroinflammation, early-life adversity, and brain development. Harv Rev Psychiatry. 30:24–39. DOI: 10.1097/HRP.0000000000000325. PMID: 34995033. PMCID: PMC8820591.
Article
59. Campos ACP, Antunes GF, Matsumoto M, Pagano RL, Martinez RCR. 2020; Neuroinflammation, pain and depression: an overview of the main findings. Front Psychol. 11:1825. DOI: 10.3389/fpsyg.2020.01825. PMID: 32849076. PMCID: PMC7412934.
Article
60. Burke NN, Finn DP, Roche M. 2015; Neuroinflammatory mechanisms linking pain and depression. Mod Trends Pharmacopsychiatry. 30:36–50. DOI: 10.1159/000435931. PMID: 26437255.
Article
61. Guo B, Zhang M, Hao W, Wang Y, Zhang T, Liu C. 2023; Neuroinflammation mechanisms of neuromodulation therapies for anxiety and depression. Transl Psychiatry. 13:5. DOI: 10.1038/s41398-022-02297-y. PMID: 36624089. PMCID: PMC9829236.
Article
62. Ricklin D, Hajishengallis G, Yang K, Lambris JD. 2010; Complement: a key system for immune surveillance and homeostasis. Nat Immunol. 11:785–97. DOI: 10.1038/ni.1923. PMID: 20720586. PMCID: PMC2924908.
Article
63. Bohlson SS, Tenner AJ. 2023; Complement in the brain: contributions to neuroprotection, neuronal plasticity, and neuroinflammation. Annu Rev Immunol. 41:431–52. DOI: 10.1146/annurev-immunol-101921-035639. PMID: 36750318.
Article
64. Schartz ND, Tenner AJ. 2020; The good, the bad, and the opportunities of the complement system in neurodegenerative disease. J Neuroinflammation. 17:354. DOI: 10.1186/s12974-020-02024-8. PMID: 33239010. PMCID: PMC7690210.
Article
65. Wu X, Gao Y, Shi C, Tong J, Ma D, Shen J, et al. 2023; Complement C1q drives microglia-dependent synaptic loss and cognitive impairments in a mouse model of lipopolysaccharide-induced neuroinflammation. Neuropharmacology. 237:109646. DOI: 10.1016/j.neuropharm.2023.109646. PMID: 37356797.
Article
66. Zhou R, Chen SH, Zhao Z, Tu D, Song S, Wang Y, et al. 2023; Complement C3 enhances LPS-elicited neuroinflammation and neurodegeneration via the Mac1/NOX2 pathway. Mol Neurobiol. 60:5167–83. DOI: 10.1007/s12035-023-03393-w. PMID: 37268807. PMCID: PMC10415527.
Article
67. Veerhuis R, Boshuizen RS, Morbin M, Mazzoleni G, Hoozemans JJ, Langedijk JP, et al. 2005; Activation of human microglia by fibrillar prion protein-related peptides is enhanced by amyloid-associated factors SAP and C1q. Neurobiol Dis. 19:273–82. DOI: 10.1016/j.nbd.2005.01.005. PMID: 15837583.
Article
68. Madeshiya AK, Whitehead C, Tripathi A, Pillai A. 2022; C1q deletion exacerbates stress-induced learned helplessness behavior and induces neuroinflammation in mice. Transl Psychiatry. 12:50. DOI: 10.1038/s41398-022-01794-4. PMID: 35105860. PMCID: PMC8807734.
Article
69. Simonetti M, Hagenston AM, Vardeh D, Freitag HE, Mauceri D, Lu J, et al. 2013; Nuclear calcium signaling in spinal neurons drives a genomic program required for persistent inflammatory pain. Neuron. 77:43–57. DOI: 10.1016/j.neuron.2012.10.037. PMID: 23312515. PMCID: PMC3593630.
Article
70. Lee JD, Coulthard LG, Woodruff TM. 2019; Complement dysregulation in the central nervous system during development and disease. Semin Immunol. 45:101340. DOI: 10.1016/j.smim.2019.101340. PMID: 31708347.
Article
71. Tenner AJ. 2020; Complement-mediated events in Alzheimer's disease: mechanisms and potential therapeutic targets. J Immunol. 204:306–15. DOI: 10.4049/jimmunol.1901068. PMID: 31907273. PMCID: PMC6951444.
Article
72. Liu Y, Xu SQ, Long WJ, Zhang XY, Lu HL. 2018; C5aR antagonist inhibits occurrence and progression of complement C5a induced inflammatory response of microglial cells through activating p38MAPK and ERK1/2 signaling pathway. Eur Rev Med Pharmacol Sci. 22:7994–8003.
73. Doolen S, Cook J, Riedl M, Kitto K, Kohsaka S, Honda CN, et al. 2017; Complement 3a receptor in dorsal horn microglia mediates pronociceptive neuropeptide signaling. Glia. 65:1976–89. DOI: 10.1002/glia.23208. PMID: 28850719. PMCID: PMC5747931.
Article
74. Li J, Tian S, Wang H, Wang Y, Du C, Fang J, et al. 2021; Protection of hUC-MSCs against neuronal complement C3a receptor-mediated NLRP3 activation in CUMS-induced mice. Neurosci Lett. 741:135485. DOI: 10.1016/j.neulet.2020.135485. PMID: 33161108.
Article
75. Morgan M, Deuis JR, Woodruff TM, Lewis RJ, Vetter I. 2018; Role of complement anaphylatoxin receptors in a mouse model of acute burn-induced pain. Mol Immunol. 94:68–74. DOI: 10.1016/j.molimm.2017.12.016. PMID: 29274925.
Article
76. Reginia A, Kucharska-Mazur J, Jabłoński M, Budkowska M, Dołȩgowska B, Sagan L, et al. 2018; Assessment of complement cascade components in patients with bipolar disorder. Front Psychiatry. 9:614. DOI: 10.3389/fpsyt.2018.00614. PMID: 30538645. PMCID: PMC6277457.
Article
77. Ishii T, Hattori K, Miyakawa T, Watanabe K, Hidese S, Sasayama D, et al. 2018; Increased cerebrospinal fluid complement C5 levels in major depressive disorder and schizophrenia. Biochem Biophys Res Commun. 497:683–8. DOI: 10.1016/j.bbrc.2018.02.131. PMID: 29454970.
Article
78. Alexander JJ. 2018; Blood-brain barrier (BBB) and the complement landscape. Mol Immunol. 102:26–31. DOI: 10.1016/j.molimm.2018.06.267. PMID: 30007547.
Article
79. Alexander JJ, Anderson AJ, Barnum SR, Stevens B, Tenner AJ. 2008; The complement cascade: Yin-Yang in neuroinflammation--neuro-protection and -degeneration. J Neurochem. 107:1169–87. DOI: 10.1111/j.1471-4159.2008.05668.x. PMID: 18786171. PMCID: PMC4038542.
80. Sprong T, Brandtzaeg P, Fung M, Pharo AM, Høiby EA, Michaelsen TE, et al. 2003; Inhibition of C5a-induced inflammation with preserved C5b-9-mediated bactericidal activity in a human whole blood model of meningococcal sepsis. Blood. 102:3702–10. DOI: 10.1182/blood-2003-03-0703. PMID: 12881318.
Article
81. Paczkowski NJ, Finch AM, Whitmore JB, Short AJ, Wong AK, Monk PN, et al. 1999; Pharmacological characterization of antagonists of the C5a receptor. Br J Pharmacol. 128:1461–6. DOI: 10.1038/sj.bjp.0702938. PMID: 10602324. PMCID: PMC1571783.
Article
82. Ricklin D, Lambris JD. 2007; Complement-targeted therapeutics. Nat Biotechnol. 25:1265–75. DOI: 10.1038/nbt1342. PMID: 17989689. PMCID: PMC2966895.
Article
83. Tamamis P, Kieslich CA, Nikiforovich GV, Woodruff TM, Morikis D, Archontis G. 2014; Insights into the mechanism of C5aR inhibition by PMX53 via implicit solvent molecular dynamics simulations and docking. BMC Biophys. 7:5. DOI: 10.1186/2046-1682-7-5. PMID: 25170421. PMCID: PMC4141665.
Article
84. Moriconi A, Cunha TM, Souza GR, Lopes AH, Cunha FQ, Carneiro VL, et al. 2014; Targeting the minor pocket of C5aR for the rational design of an oral allosteric inhibitor for inflammatory and neuropathic pain relief. Proc Natl Acad Sci U S A. 111:16937–42. DOI: 10.1073/pnas.1417365111. PMID: 25385614. PMCID: PMC4250151.
Article
85. Vicente B, Saldivia S, Hormazabal N, Bustos C, Rubí P. 2020; Etifoxine is non-inferior than clonazepam for reduction of anxiety symptoms in the treatment of anxiety disorders: a randomized, double blind, non-inferiority trial. Psychopharmacology (Berl). 237:3357–67. DOI: 10.1007/s00213-020-05617-6. PMID: 33009629.
Article
86. Fairley LH, Sahara N, Aoki I, Ji B, Suhara T, Higuchi M, et al. 2021; Neuroprotective effect of mitochondrial translocator protein ligand in a mouse model of tauopathy. J Neuroinflammation. 18:76. DOI: 10.1186/s12974-021-02122-1. PMID: 33740987. PMCID: PMC7980620.
Article
87. Rupprecht R, Rupprecht C, Di Benedetto B, Rammes G. 2022; Neuroinflammation and psychiatric disorders: relevance of C1q, translocator protein (18 kDa) (TSPO), and neurosteroids. World J Biol Psychiatry. 23:257–63. DOI: 10.1080/15622975.2021.1961503. PMID: 34320915.
Full Text Links
  • KJP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr