Prog Med Phys.  2024 Mar;35(1):1-9. 10.14316/pmp.2024.35.1.1.

Impact of Planning Target Volume Margins in Stereotactic Radiosurgery for Brain Metastasis: A Review

Affiliations
  • 1Department of Medical Physics, University of Ghana, Accra, Ghana
  • 2Department of Medical Imaging Technology and Sonography, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana

Abstract

Margin inclusion or exclusion remains the most critical and controversial aspect of stereotactic radiosurgery (SRS) for metastatic brain tumors. This review aimed to examine the available literature on the impact of margins in SRS of brain metastasis and to assess the response of some medical physicists on the use of these margins. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses method was used to review articles published in PubMed, Embase, and Science Direct databases from January 2012 to December 2022 using the following keywords: planning target volume, brain metastasis, margin, and stereotactic radiosurgery. A simple survey consisting of five questions was completed by ten medical physicists with experience in SRS treatment planning. The results were analyzed using IBM SPSS Statistics version 26.0. Of the 1,445 articles identified, only 38 articles were chosen. Of these, eight papers were deemed relevant to the focus of this review. These papers showed an increase in the risk of radionecrosis, whereas differences in local control were variable as the margin increased. In the survey, the response rate to whether or not to use margins in SRS, a critical question, was 50%. Margin addition increases the risk of radio necrosis. The local control rate varies among treatment modalities and cannot be generalized. From the survey, no consensus was reached regarding the use of these margins. This calls for further deliberations among professionals directly involved in SRS.

Keyword

Planning target volume; Stereotactic radiosurgery; Margins; Brain metastasis

Figure

  • Fig. 1 Summary of the PRISMA flow [25].

  • Fig. 2 Graphical response of respondents for four of the questions. CTV, clinical target volume; GTV, gross tumor volume; PTV, planning target volume; SRS, stereotactic radiosurgery.

  • Fig. 3 Bar graph distributions of respondents’ answers to the fifth question: what the maximum and optimal planning target volume (PTV) margin should be to be accepted and applied in stereotactic radiosurgery treatment?


Reference

References

1. Liu Q, Tong X, Wang J. 2019; Management of brain metastases: history and the present. Chin Neurosurg J. 5:1. DOI: 10.1186/s41016-018-0149-0. PMID: 32922901. PMCID: PMC7398203.
Article
2. Badiyan SN, Regine WF, Mehta M. 2016; Stereotactic radiosurgery for treatment of brain metastases. J Oncol Pract. 12:703–712. DOI: 10.1200/JOP.2016.012922. PMID: 27511715.
Article
3. Valiente M, Ahluwalia MS, Boire A, Brastianos PK, Goldberg SB, Lee EQ, et al. 2018; The evolving landscape of brain metastasis. Trends Cancer. 4:176–196. DOI: 10.1016/j.trecan.2018.01.003. PMID: 29506669. PMCID: PMC6602095.
Article
4. Boire A, Brastianos PK, Garzia L, Valiente M. 2020; Brain metastasis. Nat Rev Cancer. 20:4–11. DOI: 10.1038/s41568-019-0220-y. PMID: 31780784.
Article
5. Mazzola R, Corradini S, Gregucci F, Figlia V, Fiorentino A, Alongi F. 2019; Role of Radiosurgery/Stereotactic Radiotherapy in oligometastatic disease: brain oligometastases. Front Oncol. 9:206. DOI: 10.3389/fonc.2019.00206. PMID: 31019891. PMCID: PMC6458247.
Article
6. Lamba N, Muskens IS, DiRisio AC, Meijer L, Briceno V, Edrees H, et al. 2017; Stereotactic radiosurgery versus whole-brain radiotherapy after intracranial metastasis resection: a systematic review and meta-analysis. Radiat Oncol. 12:106. DOI: 10.1186/s13014-017-0840-x. PMID: 28646895. PMCID: PMC5483276.
Article
7. Kocher M, Wittig A, Piroth MD, Treuer H, Seegenschmiedt H, Ruge M, et al. 2014; Stereotactic radiosurgery for treatment of brain metastases. A report of the DEGRO Working Group on Stereotactic Radiotherapy. Strahlenther Onkol. 190:521–532. DOI: 10.1007/s00066-014-0648-7. PMID: 24715242.
Article
8. Vogelbaum MA, Brown PD, Messersmith H, Brastianos PK, Burri S, Cahill D, et al. 2022; Treatment for brain metastases: ASCO-SNO-ASTRO guideline. J Clin Oncol. 40:492–516. Erratum in: J Clin Oncol. 2022;40:1392. DOI: 10.1200/JCO.21.02314. PMID: 34932393.
Article
9. Soliman H, Das S, Larson DA, Sahgal A. 2016; Stereotactic radiosurgery (SRS) in the modern management of patients with brain metastases. Oncotarget. 7:12318–12330. DOI: 10.18632/oncotarget.7131. PMID: 26848525. PMCID: PMC4914287.
Article
10. Lupattelli M, Alì E, Ingrosso G, Saldi S, Fulcheri C, Borghesi S, et al. 2020; Stereotactic radiotherapy for brain metastases: imaging tools and dosimetric predictive factors for radionecrosis. J Pers Med. 10:59. DOI: 10.3390/jpm10030059. PMID: 32635476. PMCID: PMC7565332.
Article
11. Dimitriadis A, Paddick I. 2018; A novel index for assessing treatment plan quality in stereotactic radiosurgery. J Neurosurg. 129(Suppl 1):118–124. DOI: 10.3171/2018.7.GKS18694. PMID: 30544322.
Article
12. Chao ST, De Salles A, Hayashi M, Levivier M, Ma L, Martinez R, et al. 2018; Stereotactic radiosurgery in the management of limited (1-4) brain metasteses: systematic review and International Stereotactic Radiosurgery Society practice guideline. Neurosurgery. 83:345–353. DOI: 10.1093/neuros/nyx522. PMID: 29126142.
Article
13. Hartgerink D, Swinnen A, Roberge D, Nichol A, Zygmanski P, Yin FF, et al. 2019; LINAC based stereotactic radiosurgery for multiple brain metastases: guidance for clinical implementation. Acta Oncol. 58:1275–1282. DOI: 10.1080/0284186X.2019.1633016. PMID: 31257960.
Article
14. Combs SE, Baumert BG, Bendszus M, Bozzao A, Brada M, Fariselli L, et al. 2021; ESTRO ACROP guideline for target volume delineation of skull base tumors. Radiother Oncol. 156:80–94. DOI: 10.1016/j.radonc.2020.11.014. PMID: 33309848.
Article
15. Badloe J, Mast M, Petoukhova A, Franssen JH, Ghariq E, van der Voort van Zijp N, et al. 2021; Impact of PTV margin reduction (2 mm to 0 mm) on pseudoprogression in stereotactic radiotherapy of solitary brain metastases. Tech Innov Patient Support Radiat Oncol. 17:40–47. DOI: 10.1016/j.tipsro.2021.02.008. PMID: 34007906. PMCID: PMC8111033.
Article
16. Bayman E, Ataman ÖU, Kinay M, Akman F. 2010; How to determine margins for planning target volume (PTV): from 2D to 3D planning in radiotherapy for head and neck cancer? Portal imaging assessment for set-up errors. Türk Onkol Derg. 25:104–110.
17. Jhaveri J, Chowdhary M, Zhang X, Press RH, Switchenko JM, Ferris MJ, et al. 2018; Does size matter? Investigating thDoes size matter? Investigating the optimal planning target volume margin for postoperative stereotactic radiosurgery to resected brain metastasese optimal planning target volume margin for postoperative stereotactic radiosurgery to resected brain metastases. J Neurosurg. 130:797–803. DOI: 10.3171/2017.9.JNS171735. PMID: 29676690. PMCID: PMC6195865.
Article
18. Kutuk T, Kotecha R, Tolakanahalli R, Wieczorek DJJ, Lee YC, Ahluwalia MS, et al. 2022; Zero setup margin mask versus frame immobilization during Gamma Knife® Icon™ stereotactic radiosurgery for brain metastases. Cancers (Basel). 14:3392. DOI: 10.3390/cancers14143392. PMID: 35884453. PMCID: PMC9320023.
Article
19. Grishchuk D, Dimitriadis A, Sahgal A, De Salles A, Fariselli L, Kotecha R, et al. 2023; ISRS technical guidelines for stereotactic radiosurgery: treatment of small brain metastases (≤1 cm in diameter). Pract Radiat Oncol. 13:183–194. DOI: 10.1016/j.prro.2022.10.013. PMID: 36435388.
Article
20. Noël G, Simon JM, Valery CA, Cornu P, Boisserie G, Hasboun D, et al. 2003; Radiosurgery for brain metastasis: impact of CTV on local control. Radiother Oncol. 68:15–21. DOI: 10.1016/S0167-8140(03)00207-X. PMID: 12885447.
Article
21. Nataf F, Schlienger M, Liu Z, Foulquier JN, Grès B, Orthuon A, et al. 2008; Radiosurgery with or without A 2-mm margin for 93 single brain metastases. Int J Radiat Oncol Biol Phys. 70:766–772. DOI: 10.1016/j.ijrobp.2007.11.002. PMID: 18262089.
Article
22. Lawrence YR, Li XA, el Naqa I, Hahn CA, Marks LB, Merchant TE, et al. 2010; Radiation dose-volume effects in the brain. Int J Radiat Oncol Biol Phys. 76(3 Suppl):S20–7. DOI: 10.1016/j.ijrobp.2009.02.091. PMID: 20171513. PMCID: PMC3554255.
Article
23. Kohutek ZA, Yamada Y, Chan TA, Brennan CW, Tabar V, Gutin PH, et al. 2015; Long-term risk of radionecrosis and imaging changes after stereotactic radiosurgery for brain metastases. J Neurooncol. 125:149–156. DOI: 10.1007/s11060-015-1881-3. PMID: 26307446. PMCID: PMC4726630.
Article
24. Zhang M, Zhang Q, Gan H, Li S, Zhou SM. 2016; Setup uncertainties in linear accelerator based stereotactic radiosurgery and a derivation of the corresponding setup margin for treatment planning. Phys Med. 32:379–385. DOI: 10.1016/j.ejmp.2016.02.002. PMID: 26896390.
Article
25. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. 2021; The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 372:n71. DOI: 10.1136/bmj.n71. PMID: 33782057. PMCID: PMC8005924.
26. Ma L, Sahgal A, Larson DA, Pinnaduwage D, Fogh S, Barani I, et al. 2014; Impact of millimeter-level margins on peripheral normal brain sparing for gamma knife radiosurgery. Int J Radiat Oncol Biol Phys. 89:206–213. DOI: 10.1016/j.ijrobp.2014.01.011. PMID: 24725703.
Article
27. Feuvret L, Vinchon S, Martin V, Lamproglou I, Halley A, Calugaru V, et al. 2014; Stereotactic radiotherapy for large solitary brain metastases. Cancer Radiother. 18:97–106. DOI: 10.1016/j.canrad.2013.12.003. PMID: 24439342.
Article
28. Sneed PK, Mendez J, Vemer-van den Hoek JG, Seymour ZA, Ma L, Molinaro AM, et al. 2015; Adverse radiation effect after stereotactic radiosurgery for brain metastases: incidence, time course, and risk factors. J Neurosurg. 123:373–386. DOI: 10.3171/2014.10.JNS141610. PMID: 25978710.
Article
29. Kirkpatrick JP, Wang Z, Sampson JH, McSherry F, Herndon JE 2nd, Allen KJ, et al. 2015; Defining the optimal planning target volume in image-guided stereotactic radiosurgery of brain metastases: results of a randomized trial. Int J Radiat Oncol Biol Phys. 91:100–108. DOI: 10.1016/j.ijrobp.2014.09.004. PMID: 25442342.
Article
30. Agazaryan N, Tenn S, Lee C, Steinberg M, Hegde J, Chin R, et al. 2021; Simultaneous radiosurgery for multiple brain metastases: technical overview of the UCLA experience. Radiat Oncol. 16:221. DOI: 10.1186/s13014-021-01944-w. PMID: 34789300. PMCID: PMC8597274.
Article
31. Choi CY, Chang SD, Gibbs IC, Adler JR, Harsh GR 4th, Lieberson RE, et al. 2012; Stereotactic radiosurgery of the postoperative resection cavity for brain metastases: prospective evaluation of target margin on tumor control. Int J Radiat Oncol Biol Phys. 84:336–342. DOI: 10.1016/j.ijrobp.2011.12.009. PMID: 22652105.
Article
32. Morgan-Fletcher SL. 2001; Prescribing, recording and reporting photon beam therapy (supplement to ICRU report 50). Br J Radiol. 74:294. DOI: 10.1259/bjr.74.879.740294.
Article
33. Leszczyńska P, Leszczyński W, Wydmański J, Kinga D, Namysł Kaletka A, Tukiendorf A, et al. 2017; Delineation of margins for the planning target volume (PTV) for image-guided radiotherapy (IGRT) of gastric cancer based on intrafraction motion. Asian Pac J Cancer Prev. 18:37–41.
34. The Royal Australian and New Zealand College of Radiologists (RANZCR). 2022; Quality guidelines for volume delineation in radiation oncology, version 2.1. RANZCR. 1–18.
35. Brandan M, Gregoire V, Howell RW. 2014; Report 90: Key data for ionizing-radiation dosimetry: measurement standards and applications. J ICRU. 14:NP. DOI: 10.1093/jicru_ndw043.
36. Han EY, Diagaradjane P, Luo D, Ding Y, Kalaitzakis G, Zoros E, et al. 2020; Validation of PTV margin for Gamma Knife Icon frameless treatment using a PseudoPatient® Prime anthropomorphic phantom. J Appl Clin Med Phys. 21:278–285. DOI: 10.1002/acm2.12997. PMID: 32786141. PMCID: PMC7497928.
Article
37. Badakhshi H, Kaul D, Wust P, Wiener E, Budach V, Graf R. 2013; Image-guided stereotactic radiosurgery for cranial lesions: large margins compensate for reduced image guidance frequency. Anticancer Res. 33:4639–4643. Erratum in: Anticancer Res. 2013;33:5707.
38. Meeks SL, Pukala J, Ramakrishna N, Willoughby TR, Bova FJ. 2011; Radiosurgery technology development and use. J Radiosurg SBRT. 1:21–29.
39. Pudsey L, Haworth A, White P, Moutrie Z, Jonker B, Foote M, et al. 2022; Current status of intra-cranial stereotactic radiotherapy and stereotactic radiosurgery in Australia and New Zealand: key considerations from a workshop and surveys. Phys Eng Sci Med. 45:251–259. DOI: 10.1007/s13246-022-01108-4. PMID: 35113342. PMCID: PMC8901507.
Article
40. Saenz D, Papanikolaou N, Zoros E, Pappas E, Reiner M, Chew LT, et al. 2021; Robustness of single-isocenter multiple-metastasis stereotactic radiosurgery end-to-end testing across institutions. J Radiosurg SBRT. 7:223–232. DOI: 10.21203/rs.3.rs-15983/v1.
Article
41. Sahgal A, Ruschin M, Ma L, Verbakel W, Larson D, Brown PD. 2017; Stereotactic radiosurgery alone for multiple brain metastases? A review of clinical and technical issues. Neuro Oncol. 19(suppl_2):ii2–ii15. DOI: 10.1093/neuonc/nox001. PMID: 28380635. PMCID: PMC5463499.
Article
42. Mesko S, Wang H, Tung S, Wang C, Pasalic D, Chapman BV, et al. 2020; Estimating PTV margins in head and neck stereotactic ablative radiation therapy (SABR) through target site analysis of positioning and intrafractional accuracy. Int J Radiat Oncol Biol Phys. 106:185–193. DOI: 10.1016/j.ijrobp.2019.09.010. PMID: 31580928. PMCID: PMC7307590.
Article
43. Korytko T, Radivoyevitch T, Colussi V, Wessels BW, Pillai K, Maciunas RJ, et al. 2006; 12 Gy gamma knife radiosurgical volume is a predictor for radiation necrosis in non-AVM intracranial tumors. Int J Radiat Oncol Biol Phys. 64:419–424. DOI: 10.1016/j.ijrobp.2005.07.980. PMID: 16226848.
Article
44. Yamamoto M, Serizawa T, Shuto T, Akabane A, Higuchi Y, Kawagishi J, et al. 2014; Stereotactic radiosurgery for patients with multiple brain metastases (JLGK0901): a multi-institutional prospective observational study. Lancet Oncol. 15:387–395. DOI: 10.1016/S1470-2045(14)70061-0. PMID: 24621620.
Article
45. Trifiletti DM, Lee CC, Kano H, Cohen J, Janopaul-Naylor J, Alonso-Basanta M, et al. 2016; Stereotactic radiosurgery for brainstem metastases: an international cooperative study to define response and toxicity. Int J Radiat Oncol Biol Phys. 96:280–288. DOI: 10.1016/j.ijrobp.2016.06.009. PMID: 27478166. PMCID: PMC5014646.
Article
46. Shakeshaft J. 2021. IOMP webinar: CTV-PTV margins in stereotactic radiosurgery: do we need them? IOMPOfficial. Available from: https://www.youtube.com/watch?v=b0DBzK6qq9c. cited 2023 Apr 4.
47. Minniti G, Capone L, Alongi F, Figlia V, Nardiello B, El Gawhary R, et al. 2020; Initial experience with single-isocenter radiosurgery to target multiple brain metastases using an automated treatment planning software: clinical outcomes and optimal target volume margins strategy. Adv Radiat Oncol. 5:856–864. DOI: 10.1016/j.adro.2020.06.008. PMID: 33083647. PMCID: PMC7557192.
Article
48. Diez P, Hanna GG, Aitken KL, van As N, Carver A, Colaco RJ, et al. 2022; UK 2022 consensus on normal tissue dose-volume constraints for oligometastatic, primary lung and hepatocellular carcinoma stereotactic ablative radiotherapy. Clin Oncol (R Coll Radiol). 34:288–300. DOI: 10.1016/j.clon.2022.02.010. PMID: 35272913.
Article
49. Kron T. 2008; Reduction of margins in external beam radiotherapy. J Med Phys. 33:41–42. DOI: 10.4103/0971-6203.41190. PMID: 19893688. PMCID: PMC2772031.
Article
Full Text Links
  • PMP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2025 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr