Korean J Physiol Pharmacol.  2024 Mar;28(2):107-112. 10.4196/kjpp.2024.28.2.107.

The role of 27-hydroxycholesterol in meta-inflammation

Affiliations
  • 1Department of Pharmacology, School of Medicine, Pusan National University, Yangsan 50612, Korea
  • 2Department of Medicine, School of Medicine, Pusan National University, Yangsan 50612, Korea

Abstract

27-Hydroxycholesterol (27OHChol), a prominent cholesterol metabolite present in the bloodstream and peripheral tissues, is a kind of immune oxysterol that elicits immune response. Recent research indicates the involvement of 27OHChol in metabolic inflammation (meta-inflammation) characterized by chronic responses associated with metabolic irregularities. 27OHChol activates monocytic cells such that they secrete pro-inflammatory cytokines and chemokines, and increase the expression of cell surface molecules such as pattern-recognition receptors that play key roles in immune cell-cell communication and sensing metabolism-associated danger signals. Levels of 27OHChol increase when cholesterol metabolism is disrupted, and the resulting inflammatory responses can contribute to the development and complications of metabolic syndrome, including obesity, insulin resistance, and cardiovascular diseases. Since 27OHChol can induce chronic immune response by activating monocyte-macrophage lineage cells that play a crucial role in meta-inflammation, it is essential to understand the 27OHChol-induced inflammatory responses to unravel the roles and mechanisms of action of this cholesterol metabolite in chronic metabolic disorders.

Keyword

Atherosclerosis; Meta-inflammation; Monocytes/Macrophages; Obesity; 27-Hydroxycholesterol

Figure

  • Fig. 1 The role of 27OHChol in metabolic syndrome. Dysfunction in cholesterol metabolism leads to increased accumulation of 27OHChol in tissues. The accumulated 27OHChol induces metabolic stress and low-grade inflammation by activating monocytic lineage cells. Unless 27OHChol is removed from affected tissues, the inflammatory response becomes chronic. The tissue-specific chronic inflammation induced by 27OHChol leads to metabolic syndrome. 27OHChol, 27-hydroxycholesterol.


Reference

1. Cortes VA, Busso D, Maiz A, Arteaga A, Nervi F, Rigotti A. 2014; Physiological and pathological implications of cholesterol. Front Biosci (Landmark Ed). 19:416–428. DOI: 10.2741/4216. PMID: 24389193.
Article
2. Brown AJ, Jessup W. 1999; Oxysterols and atherosclerosis. Atherosclerosis. 142:1–28. DOI: 10.1016/S0021-9150(98)00196-8. PMID: 9920502.
Article
3. Carpenter KL, Taylor SE, van der Veen C, Williamson BK, Ballantine JA, Mitchinson MJ. 1995; Lipids and oxidised lipids in human atherosclerotic lesions at different stages of development. Biochim Biophys Acta. 1256:141–150. DOI: 10.1016/0005-2760(94)00247-V. PMID: 7766691.
Article
4. Garcia-Cruset S, Carpenter KL, Guardiola F, Stein BK, Mitchinson MJ. 2001; Oxysterol profiles of normal human arteries, fatty streaks and advanced lesions. Free Radic Res. 35:31–41. DOI: 10.1080/10715760100300571. PMID: 11697115.
Article
5. Choi C, Finlay DK. 2020; Diverse immunoregulatory roles of oxysterols-the oxidized cholesterol metabolites. Metabolites. 10:384. DOI: 10.3390/metabo10100384. PMID: 32998240. PMCID: PMC7601797.
Article
6. Schroepfer GJ Jr. 2000; Oxysterols: modulators of cholesterol metabolism and other processes. Physiol Rev. 80:361–554. DOI: 10.1152/physrev.2000.80.1.361. PMID: 10617772.
Article
7. Umetani M, Shaul PW. 2011; 27-Hydroxycholesterol: the first identified endogenous SERM. Trends Endocrinol Metab. 22:130–135. DOI: 10.1016/j.tem.2011.01.003. PMID: 21353593. PMCID: PMC3070823.
Article
8. Lee J, Kim BY, Son Y, Giang DH, Lee D, Eo SK, Kim K. 2019; 4'OMethylalpinumisoflavone inhibits the activation of monocytes/macrophages to an immunostimulatory phenotype induced by 27hydroxycholesterol. Int J Mol Med. 43:2177–2186. DOI: 10.3892/ijmm.2019.4135.
9. Son Y, Kim SM, Lee SA, Eo SK, Kim K. 2013; Oxysterols induce transition of monocytic cells to phenotypically mature dendritic cell-like cells. Biochem Biophys Res Commun. 438:161–168. DOI: 10.1016/j.bbrc.2013.07.046. PMID: 23876312.
Article
10. Kim SM, Kim BY, Eo SK, Kim CD, Kim K. 2015; 27-Hydroxycholesterol up-regulates CD14 and predisposes monocytic cells to superproduction of CCL2 in response to lipopolysaccharide. Biochim Biophys Acta. 1852:442–450. DOI: 10.1016/j.bbadis.2014.12.003. PMID: 25497142.
Article
11. Kim SM, Kim BY, Lee SA, Eo SK, Yun Y, Kim CD, Kim K. 2014; 27-Hydroxycholesterol and 7alpha-hydroxycholesterol trigger a sequence of events leading to migration of CCR5-expressing Th1 lymphocytes. Toxicol Appl Pharmacol. 274:462–470. DOI: 10.1016/j.taap.2013.12.007. PMID: 24370436.
Article
12. Asghari A, Ishikawa T, Hiramitsu S, Lee WR, Umetani J, Bui L, Korach KS, Umetani M. 2019; 27-Hydroxycholesterol promotes adiposity and mimics adipogenic diet-induced inflammatory signaling. Endocrinology. 160:2485–2494. DOI: 10.1210/en.2019-00349. PMID: 31386147. PMCID: PMC6760292.
Article
13. Asghari A, Umetani M. 2020; Obesity and cancer: 27-hydroxycholesterol, the missing link. Int J Mol Sci. 21:4822. DOI: 10.3390/ijms21144822. PMID: 32650428. PMCID: PMC7404106.
Article
14. Poli G, Biasi F, Leonarduzzi G. 2013; Oxysterols in the pathogenesis of major chronic diseases. Redox Biol. 1:125–130. DOI: 10.1016/j.redox.2012.12.001. PMID: 24024145. PMCID: PMC3757713.
Article
15. Umetani M, Ghosh P, Ishikawa T, Umetani J, Ahmed M, Mineo C, Shaul PW. 2014; The cholesterol metabolite 27-hydroxycholesterol promotes atherosclerosis via proinflammatory processes mediated by estrogen receptor alpha. Cell Metab. 20:172–182. DOI: 10.1016/j.cmet.2014.05.013. PMID: 24954418. PMCID: PMC4098728.
Article
16. Ramos-Lopez O, Martinez-Urbistondo D, Vargas-Nuñez JA, Martinez JA. 2022; The role of nutrition on meta-inflammation: insights and potential targets in communicable and chronic disease management. Curr Obes Rep. 11:305–335. DOI: 10.1007/s13679-022-00490-0. PMID: 36258149. PMCID: PMC9579631.
Article
17. Bonanni A, Vinci R, Pedicino D, Severino A, De Vita A, Filomia S, Brecciaroli M, Liuzzo G. d'Aiello A. 2023; Meta-inflammation and new anti-diabetic drugs: a new chance to knock down residual cardiovascular risk. Int J Mol Sci. 24:8643. DOI: 10.3390/ijms24108643. PMID: 37239990. PMCID: PMC10217924.
Article
18. Qu L, Matz AJ, Karlinsey K, Cao Z, Vella AT, Zhou B. 2022; Macrophages at the crossroad of meta-inflammation and inflammaging. Genes (Basel). 13:2074. DOI: 10.3390/genes13112074. PMID: 36360310. PMCID: PMC9690997.
Article
19. Russo S, Kwiatkowski M, Govorukhina N, Bischoff R, Melgert BN. 2021; Meta-inflammation and metabolic reprogramming of macrophages in diabetes and obesity: the importance of metabolites. Front Immunol. 12:746151. DOI: 10.3389/fimmu.2021.746151. PMID: 34804028. PMCID: PMC8602812.
Article
20. Kim BY, Son Y, Cho HR, Lee D, Eo SK, Kim K. 2021; 27-Hydroxycholesterol induces macrophage gene expression via LXR-dependent and -independent mechanisms. Korean J Physiol Pharmacol. 25:111–118. DOI: 10.4196/kjpp.2021.25.2.111. PMID: 33602881. PMCID: PMC7893494.
Article
21. Kim SM, Lee SA, Kim BY, Bae SS, Eo SK, Kim K. 2013; 27-Hydroxycholesterol induces recruitment of monocytic cells by enhancing CCL2 production. Biochem Biophys Res Commun. 442:159–164. DOI: 10.1016/j.bbrc.2013.11.052. PMID: 24269812.
Article
22. Chu HX, Arumugam TV, Gelderblom M, Magnus T, Drummond GR, Sobey CG. 2014; Role of CCR2 in inflammatory conditions of the central nervous system. J Cereb Blood Flow Metab. 34:1425–1429. DOI: 10.1038/jcbfm.2014.120. PMID: 24984897. PMCID: PMC4158674.
Article
23. Shi C, Pamer EG. 2011; Monocyte recruitment during infection and inflammation. Nat Rev Immunol. 11:762–774. DOI: 10.1038/nri3070. PMID: 21984070. PMCID: PMC3947780.
Article
24. Libby P, Ridker PM, Maseri A. 2002; Inflammation and atherosclerosis. Circulation. 105:1135–1143. DOI: 10.1161/hc0902.104353. PMID: 11877368.
Article
25. Gschwandtner M, Derler R, Midwood KS. 2019; More than just attractive: how CCL2 influences myeloid cell behavior beyond chemotaxis. Front Immunol. 10:2759. DOI: 10.3389/fimmu.2019.02759. PMID: 31921102. PMCID: PMC6923224.
Article
26. Kim SM, Jang H, Son Y, Lee SA, Bae SS, Park YC, Eo SK, Kim K. 2013; 27-hydroxycholesterol induces production of tumor necrosis factor-alpha from macrophages. Biochem Biophys Res Commun. 430:454–459. DOI: 10.1016/j.bbrc.2012.12.021. PMID: 23246833.
Article
27. Parameswaran N, Patial S. 2010; Tumor necrosis factor-α signaling in macrophages. Crit Rev Eukaryot Gene Expr. 20:87–103. DOI: 10.1615/CritRevEukarGeneExpr.v20.i2.10. PMID: 21133840. PMCID: PMC3066460.
Article
28. Cawthorn WP, Sethi JK. 2008; TNF-alpha and adipocyte biology. FEBS Lett. 582:117–131. DOI: 10.1016/j.febslet.2007.11.051. PMID: 18037376. PMCID: PMC4304634.
29. Nieto-Vazquez I, Fernández-Veledo S, Krämer DK, Vila-Bedmar R, Garcia-Guerra L, Lorenzo M. 2008; Insulin resistance associated to obesity: the link TNF-alpha. Arch Physiol Biochem. 114:183–194. Erratum in: Arch Physiol Biochem. 2009;115:117. DOI: 10.1080/13813450802181047. PMID: 18629684.
Article
30. Kleinbongard P, Heusch G, Schulz R. 2010; TNFalpha in atherosclerosis, myocardial ischemia/reperfusion and heart failure. Pharmacol Ther. 127:295–314. DOI: 10.1016/j.pharmthera.2010.05.002. PMID: 20621692.
Article
31. Zhang Y, Yang X, Bian F, Wu P, Xing S, Xu G, Li W, Chi J, Ouyang C, Zheng T, Wu D, Zhang Y, Li Y, Jin S. 2014; TNF-α promotes early atherosclerosis by increasing transcytosis of LDL across endothelial cells: crosstalk between NF-κB and PPAR-γ. J Mol Cell Cardiol. 72:85–94. DOI: 10.1016/j.yjmcc.2014.02.012. PMID: 24594319.
Article
32. Popa C, Netea MG, van Riel PL, van der Meer JW, Stalenhoef AF. 2007; The role of TNF-alpha in chronic inflammatory conditions, intermediary metabolism, and cardiovascular risk. J Lipid Res. 48:751–762. DOI: 10.1194/jlr.R600021-JLR200. PMID: 17202130.
Article
33. Kim SM, Lee CW, Kim BY, Jung YS, Eo SK, Park YC, Kim K. 2015; 27-Oxygenated cholesterol induces expression of CXCL8 in macrophages via NF-κB and CD88. Biochem Biophys Res Commun. 463:1152–1158. DOI: 10.1016/j.bbrc.2015.06.075. PMID: 26086093.
Article
34. Cambier S, Gouwy M, Proost P. 2023; The chemokines CXCL8 and CXCL12: molecular and functional properties, role in disease and efforts towards pharmacological intervention. Cell Mol Immunol. 20:217–251. DOI: 10.1038/s41423-023-00974-6. PMID: 36725964. PMCID: PMC9890491.
Article
35. Apostolakis S, Vogiatzi K, Amanatidou V, Spandidos DA. 2009; Interleukin 8 and cardiovascular disease. Cardiovasc Res. 84:353–360. DOI: 10.1093/cvr/cvp241. PMID: 19617600.
Article
36. Silva BRD, Cirelli T, Nepomuceno R, Theodoro LH, Orrico SRP, Cirelli JA, Barros SP, Scarel-Caminaga RM. 2020; Functional haplotype in the interleukin8 (CXCL8) gene is associated with type 2 diabetes mellitus and periodontitis in Brazilian population. Diabetes Metab Syndr. 14:1665–1672. DOI: 10.1016/j.dsx.2020.08.036. PMID: 32905938.
Article
37. Loetscher P, Uguccioni M, Bordoli L, Baggiolini M, Moser B, Chizzolini C, Dayer JM. 1998; CCR5 is characteristic of Th1 lymphocytes. Nature. 391:344–345. DOI: 10.1038/34814. PMID: 9450746.
Article
38. Romagnani S. 1999; Th1/Th2 cells. Inflamm Bowel Dis. 5:285–294. DOI: 10.1097/00054725-199911000-00009. PMID: 10579123.
Article
39. Chen J, Xiang X, Nie L, Guo X, Zhang F, Wen C, Xia Y, Mao L. 2023; The emerging role of Th1 cells in atherosclerosis and its implications for therapy. Front Immunol. 13:1079668. DOI: 10.3389/fimmu.2022.1079668. PMID: 36685487. PMCID: PMC9849744.
Article
40. Saigusa R, Winkels H, Ley K. 2020; T cell subsets and functions in atherosclerosis. Nat Rev Cardiol. 17:387–401. DOI: 10.1038/s41569-020-0352-5. PMID: 32203286. PMCID: PMC7872210.
Article
41. Taleb S. 2016; Inflammation in atherosclerosis. Arch Cardiovasc Dis. 109:708–715. DOI: 10.1016/j.acvd.2016.04.002. PMID: 27595467.
Article
42. Van Herck MA, Weyler J, Kwanten WJ, Dirinck EL, De Winter BY, Francque SM, Vonghia L. 2019; The differential roles of T cells in non-alcoholic fatty liver disease and obesity. Front Immunol. 10:82. DOI: 10.3389/fimmu.2019.00082. PMID: 30787925. PMCID: PMC6372559.
Article
43. Wang Q, Wang Y, Xu D. 2021; The roles of T cells in obese adipose tissue inflammation. Adipocyte. 10:435–445. DOI: 10.1080/21623945.2021.1965314. PMID: 34515616. PMCID: PMC8463033.
Article
44. Mahlangu T, Dludla PV, Nyambuya TM, Mxinwa V, Mazibuko-Mbeje SE, Cirilli I, Marcheggiani F, Tiano L, Louw J, Nkambule BB. 2020; A systematic review on the functional role of Th1/Th2 cytokines in type 2 diabetes and related metabolic complications. . Cytokine. 126:154892. DOI: 10.1016/j.cyto.2019.154892. PMID: 31704479.
Article
45. Kim BY, Son Y, Choi J, Eo SK, Park YC, Kim K. 2017; 27-Hydroxycholesterol upregulates the production of heat shock protein 60 of monocytic cells. J Steroid Biochem Mol Biol. 172:29–35. DOI: 10.1016/j.jsbmb.2017.04.015. PMID: 28549691.
Article
46. Son Y, Kim BY, Park YC, Eo SK, Cho HR, Kim K. 2017; PI3K and ERK signaling pathways are involved in differentiation of monocytic cells induced by 27-hydroxycholesterol. Korean J Physiol Pharmacol. 21:301–308. DOI: 10.4196/kjpp.2017.21.3.301. PMID: 28461772. PMCID: PMC5409116.
Article
47. Heo W, Kim SM, Eo SK, Rhim BY, Kim K. 2014; FSL-1, a Toll-like receptor 2/6 agonist, induces expression of interleukin-1α in the presence of 27-hydroxycholesterol. Korean J Physiol Pharmacol. 18:475–480. DOI: 10.4196/kjpp.2014.18.6.475. PMID: 25598661. PMCID: PMC4296036.
Article
48. Malik A, Kanneganti TD. 2018; Function and regulation of IL-1α in inflammatory diseases and cancer. Immunol Rev. 281:124–137. DOI: 10.1111/imr.12615. PMID: 29247991. PMCID: PMC5739076.
49. Tahtinen S, Tong AJ, Himmels P, Oh J, Paler-Martinez A, Kim L, Wichner S, Oei Y, McCarron MJ, Freund EC, Amir ZA, de la Cruz CC, Haley B, Blanchette C, Schartner JM, Ye W, Yadav M, Sahin U, Delamarre L, Mellman I. 2022; IL-1 and IL-1ra are key regulators of the inflammatory response to RNA vaccines. Nat Immunol. 23:532–542. DOI: 10.1038/s41590-022-01160-y. PMID: 35332327.
Article
50. Baumann CL, Aspalter IM, Sharif O, Pichlmair A, Blüml S, Grebien F, Bruckner M, Pasierbek P, Aumayr K, Planyavsky M, Bennett KL, Colinge J, Knapp S, Superti-Furga G. 2010; CD14 is a coreceptor of Toll-like receptors 7 and 9. J Exp Med. 207:2689–2701. DOI: 10.1084/jem.20101111. PMID: 21078886. PMCID: PMC2989773.
Article
51. Choi J, Kim BY, Son Y, Lee D, Hong YS, Kim MS, Kim K. 2020; Reblastatins inhibit phenotypic changes of monocytes/macrophages in a milieu rich in 27-hydroxycholesterol. Immune Netw. 20:e17. DOI: 10.4110/in.2020.20.e17. PMID: 32395369. PMCID: PMC7192833.
Article
52. Kim BY, Son Y, Kim MS, Kim K. 2020; Prednisolone suppresses the immunostimulatory effects of 27-hydroxycholesterol. Exp Ther Med. 19:2335–2342. DOI: 10.3892/etm.2020.8458. PMID: 32194655. PMCID: PMC7041177.
Article
53. Kim BY, Son Y, Lee J, Choi J, Kim CD, Bae SS, Eo SK, Kim K. 2017; Dexamethasone inhibits activation of monocytes/macrophages in a milieu rich in 27-oxygenated cholesterol. PLoS One. 12:e0189643. DOI: 10.1371/journal.pone.0189643. PMID: 29236764. PMCID: PMC5728574.
Article
54. Kang YE, Joung KH, Kim JM, Lee JH, Kim HJ, Ku BJ. 2022; Serum CD14 concentration is associated with obesity and insulin resistance in non-diabetic individuals. J Int Med Res. 50:3000605221130010. DOI: 10.1177/03000605221130010. PMID: 36224747. PMCID: PMC9561661.
Article
55. Leite F, Leite Â, Santos A, Lima M, Barbosa J, Cosentino M, Ribeiro L. 2017; Predictors of subclinical inflammatory obesity: plasma levels of leptin, very low-density lipoprotein cholesterol and CD14 expression of CD16+ monocytes. Obes Facts. 10:308–322. DOI: 10.1159/000464294. PMID: 28738359. PMCID: PMC5644939.
Article
56. Duan J, Liu H, Chen J, Li X, Li P, Zhang R. 2021; Changes in gene expression of adipose tissue CD14+ cells in patients with Type 2 diabetes mellitus and their relationship with environmental factors. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 46:1–10.
57. Wu Z, Zhang Z, Lei Z, Lei P. 2019; CD14: biology and role in the pathogenesis of disease. Cytokine Growth Factor Rev. 48:24–31. DOI: 10.1016/j.cytogfr.2019.06.003. PMID: 31296363.
Article
58. Björkhem I, Leitersdorf E. 2000; Sterol 27-hydroxylase deficiency: a rare cause of xanthomas in normocholesterolemic humans. Trends Endocrinol Metab. 11:180–183. DOI: 10.1016/S1043-2760(00)00255-1. PMID: 10856919.
Article
Full Text Links
  • KJPP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr