1. Edwards BK, Ward E, Kohler BA, Eheman C, Zauber AG, Anderson RN, et al. 2010; Annual report to the nation on the status of cancer, 1975-2006, featuring colorectal cancer trends and impact of interventions (risk factors, screening, and treatment) to reduce future rates. Cancer. 116:544–573. DOI:
10.1002/cncr.24760. PMID:
19998273. PMCID:
PMC3619726.
Article
2. Morgan E, Arnold M, Gini A, Lorenzoni V, Cabasag C, Laversanne M, et al. 2023; Global burden of colorectal cancer in 2020 and 2040: incidence and mortality estimates from GLOBOCAN. Gut. 72:338–344. DOI:
10.1136/gutjnl-2022-327736. PMID:
36604116.
Article
3. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. 2018; Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. DOI:
10.3322/caac.21492. PMID:
30207593.
Article
4. Yu X, Zhu L, Liu J, Xie M, Chen J, Li J. 2020; Emerging role of immunotherapy for colorectal cancer with liver metastasis. Onco Targets Ther. 13:11645–11658. DOI:
10.2147/OTT.S271955. PMID:
33223838. PMCID:
PMC7671511.
6. Engstrand J, Nilsson H, Strömberg C, Jonas E, Freedman J. 2018; Colorectal cancer liver metastases-a population-based study on incidence, management and survival. BMC Cancer. 18:78. DOI:
10.1186/s12885-017-3925-x. PMID:
29334918. PMCID:
PMC5769309.
7. Martin J, Petrillo A, Smyth EC, Shaida N, Khwaja S, Cheow H, et al. 2020; Colorectal liver metastases: current management and future perspectives. World J Clin Oncol. 11:761. DOI:
10.5306/wjco.v11.i10.761. PMID:
33200074. PMCID:
PMC7643190.
Article
8. Hugen N, van de Velde CJH, de Wilt JHW, Nagtegaal ID. 2014; Metastatic pattern in colorectal cancer is strongly influenced by histological subtype. Ann Oncol. 25:651–657. DOI:
10.1093/annonc/mdt591. PMID:
24504447. PMCID:
PMC4433523.
Article
9. Ivey GD, Johnston FM, Azad NS, Christenson ES, Lafaro KJ, Shubert CR. 2022; Current surgical management strategies for colorectal cancer liver metastases. Cancers (Basel). 14:1063. DOI:
10.3390/cancers14041063. PMID:
35205811. PMCID:
PMC8870224.
Article
12. Secinaro S, Calandra D, Secinaro A, Muthurangu V, Biancone P. 2021; The role of artificial intelligence in healthcare: a structured literature review. BMC Med Inform Decis Mak. 21:125. DOI:
10.1186/s12911-021-01488-9. PMID:
33836752. PMCID:
PMC8035061.
Article
13. Vorontsov E, Cerny M, Régnier P, Di Jorio L, Pal CJ, Lapointe R, et al. 2019; Deep learning for automated segmentation of liver lesions at CT in patients with colorectal cancer liver metastases. Radiol Artif Intell. 1:180014. DOI:
10.1148/ryai.2019180014. PMID:
33937787. PMCID:
PMC8017429.
14. Paredes AZ, Hyer JM, Tsilimigras DI, Moro A, Bagante F, Guglielmi A, et al. 2020; A novel machine-learning approach to predict recurrence after resection of colorecta liver metastases. Ann Surg Oncol. 27:5139–5147. DOI:
10.1245/s10434-020-08991-9. PMID:
32779049.
Article
15. Taghavi M, Trebeschi S, Simões R, Meek DB, Beckers RC, Lambregts DM, et al. 2021; Machine learning-based analysis of CT radiomics model for prediction of colorectal metachronous liver metastases. Abdom Radiol (NY). 46:249–256. DOI:
10.1007/s00261-020-02624-1. PMID:
32583138.
Article
16. Rompianesi G, Pegoraro F, Ceresa CD, Montalti R, Troisi RI. 2022; Artificial intelligence in the diagnosis and management of colorectal cancer liver metastases. World J Gastroenterol. 28:108–122. DOI:
10.3748/wjg.v28.i1.108. PMID:
35125822. PMCID:
PMC8793013.
Article
17. Visvikis D, Cheze Le Rest C, Jaouen V, Hatt M. 2019; Artificial intelligence, machine (deep) learning and radio (geno) mics: definitions and nuclear medicine imaging applications. Eur J Nucl Med Mol Imaging. 46:2630–2637. DOI:
10.1007/s00259-019-04373-w. PMID:
31280350.
Article
18. Page MJ, Mckenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. 2021; The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Int J Surg. 88:105906. DOI:
10.1016/j.ijsu.2021.105906. PMID:
33789826.
19. Moons KG, de Groot JA, Bouwmeester W, Vergouwe Y, Mallett S, Altman DG, et al. 2014; Critical appraisal and data extraction for systematic reviews of prediction modelling studies: the CHARMS checklist. PLoS Med. 11:e1001744. DOI:
10.1371/journal.pmed.1001744. PMID:
25314315. PMCID:
PMC4196729.
Article
20. Moons KGM, Wolff RF, Riley RD, Whiting PF, Westwood M, Collins GS, et al. 2019; PROBAST: a tool to assess risk of bias and applicability of prediction model studies: explanation and elaboration. Ann Intern Med. 170:W1–W33. DOI:
10.7326/M18-1377. PMID:
30596876.
Article
22. Pfob A, Lu SC, Sidey-Gibbons C. 2022; Machine learning in medicine: a practical introduction to techniques for data pre-processing, hyperparameter tuning, and model comparison. BMC Med Res Methodol. 22:282. DOI:
10.1186/s12874-022-01758-8. PMID:
36319956. PMCID:
PMC9624048.
Article
23. Bektaş M, Tuynman JB, Costa Pereira J, Burchell GL, Van Der Peet DL. 2022; Machine learning algorithms for predicting surgical outcomes after colorectal surgery: a systematic review. World J Surg. 46:3100–3110. DOI:
10.1007/s00268-022-06728-1. PMID:
36109367. PMCID:
PMC9636121.
Article
25. Avanzo M, Wei L, Stancanello J, Vallieres M, Rao A, Morin O, et al. 2020; Machine and deep learning methods for radiomics. Med Phys. 47:e185–e202. DOI:
10.1002/mp.13678. PMID:
32418336. PMCID:
PMC8965689.
Article
26. Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG, Granton P, et al. 2012; Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer. 48:441–446. DOI:
10.1016/j.ejca.2011.11.036. PMID:
22257792. PMCID:
PMC4533986.
Article
27. Liang M, Cai Z, Zhang H, Huang C, Meng Y, Zhao L, et al. 2019; Machine learning-based analysis of rectal cancer MRI radiomics for prediction of metachronous liver metastasis. Acad Radiol. 26:1495–1504. DOI:
10.1016/j.acra.2018.12.019. PMID:
30711405.
Article
28. Yan Y, Liu H, Mao K, Zhang M, Zhou Q, Yu W, et al. 2019; Novel nomograms to predict lymph node metastasis and liver metastasis in patients with early colon carcinoma. J Transl Med. 17:193. DOI:
10.1186/s12967-019-1940-1. PMID:
31182111. PMCID:
PMC6558904.
Article
29. Li Y, Eresen A, Shangguan J, Yang J, Lu Y, Chen D, et al. 2019; Establishment of a new non-invasive imaging prediction model for liver metastasis in colon cancer. Am J Cancer Res. 9:2482–2492.
30. Lee S, Choe EK, Kim SY, Kim HS, Park KJ, Kim D. 2020; Liver imaging features by convolutional neural network to predict the metachronous liver metastasis in stage I-III colorectal cancer patients based on preoperative abdominal CT scan. BMC Bioinformatics. 21:382. DOI:
10.1186/s12859-020-03686-0. PMID:
32938394. PMCID:
PMC7495853.
Article
31. Xiao C, Zhou M, Yang X, Wang H, Tang Z, Zhou Z, et al. 2022; Accurate prediction of metachronous liver metastasis in stage I-III colorectal cancer patients using deep learning with digital pathological images. Front Oncol. 12:844067. DOI:
10.3389/fonc.2022.844067. PMID:
35433467. PMCID:
PMC9010865.
Article
32. Hao M, Li H, Wang K, Liu Y, Liang X, Ding L. 2022; Predicting metachronous liver metastasis in patients with colorectal cancer: development and assessment of a new nomogram. World J Surg Oncol. 20:80. DOI:
10.1186/s12957-022-02558-6. PMID:
35279173. PMCID:
PMC8918281.
Article
33. Chok AY, Zhao Y, Chen HLR, Tan IE, Chew DHW, Zhao Y, et al. 2023; Elderly patients over 80 years undergoing colorectal cancer resection: development and validation of a predictive nomogram for survival. World J Gastrointest Surg. 15:892–905. DOI:
10.4240/wjgs.v15.i5.892. PMID:
37342856. PMCID:
PMC10277950.
Article
34. Xiao J, Wang Y, Chen J, Xie L, Huang J. 2021; Impact of resampling methods and classification models on the imbalanced credit scoring problems. Information Sciences. 569:508–526. DOI:
10.1016/j.ins.2021.05.029.
Article
35. International Joint Conferene on Artificial Intelligence (IJCAI). In : The 1995 International Joint Conference on AI; 1995 Aug 20-25; Montreal, Canada. Montreal: International Joint Conferene on Artificial Intelligence (IJCAI);1995. p. 1137–1143.
36. Javaid M, Haleem A, Singh RP, Suman R, Rab S. 2022; Significance of machine learning in healthcare: features, pillars and applications. Int J Intell Netw. 3:58–73. DOI:
10.1016/j.ijin.2022.05.002.
Article
37. Alba AC, Agoritsas T, Walsh M, Hanna S, Iorio A, Devereaux P, et al. 2017; Discrimination and calibration of clinical prediction models: users' guides to the medical literature. JAMA. 318:1377–1384. DOI:
10.1001/jama.2017.12126. PMID:
29049590.
Article
38. Schulz A, Viktil E, Godt JC, Johansen CK, Dormagen JB, Holtedahl JE, et al. 2016; Diagnostic performance of CT, MRI and PET/CT in patients with suspected colorectal liver metastases: the superiority of MRI. Acta Radiol. 57:1040–1048. DOI:
10.1177/0284185115617349. PMID:
26622057.
Article
39. Niekel MC, Bipat S, Stoker J. 2010; Diagnostic imaging of colorectal liver metastases with CT, MR imaging, FDG PET, and/or FDG PET/CT: a meta-analysis of prospective studies including patients who have not previously undergone treatment. Radiology. 257:674–684. DOI:
10.1148/radiol.10100729. PMID:
20829538.
Article
40. Forghani R, Savadjiev P, Chatterjee A, Muthukrishnan N, Reinhold C, Forghani B. 2019; Radiomics and artificial intelligence for biomarker and prediction model development in oncology. Comput Struct Biotechnol J. 17:995–1008. DOI:
10.1016/j.csbj.2019.07.001. PMID:
31388413. PMCID:
PMC6667772.
Article
41. Fan L, Fang M, Tu W, Zhang D, Wang Y, Zhou X, et al. 2019; Radiomics signature: a biomarker for the preoperative distant metastatic prediction of stage I nonsmall cell lung cancer. Acad Radiol. 26:1253–1261. DOI:
10.1016/j.acra.2018.11.004. PMID:
30527455.
Article
42. Zhang L, Dong D, Li H, Tian J, Ouyang F, Mo X, et al. 2019; Development and validation of a magnetic resonance imaging-based model for the prediction of distant metastasis before initial treatment of nasopharyngeal carcinoma: a retrospective cohort study. EBioMedicine. 40:327–335. DOI:
10.1016/j.ebiom.2019.01.013. PMID:
30642750. PMCID:
PMC6413336.
Article
43. Coroller TP, Grossmann P, Hou Y, Velazquez ER, Leijenaar RT, Hermann G, et al. 2015; CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma. Radiother Oncol. 114:345–350. DOI:
10.1016/j.radonc.2015.02.015. PMID:
25746350. PMCID:
PMC4400248.
Article
45. Parcesepe P, Giordano G, Laudanna C, Febbraro A, Pancione M. 2016; Cancer-associated immune resistance and evasion of immune surveillance in colorectal cancer. Gastroenterol Res Pract. 2016:6261721. DOI:
10.1155/2016/6261721. PMID:
27006653. PMCID:
PMC4781955.
Article
49. Pancione M, Giordano G, Remo A, Febbraro A, Sabatino L, Manfrin E, et al. 2014; Immune escape mechanisms in colorectal cancer pathogenesis and liver metastasis. J Immunol Res. 2014:686879. DOI:
10.1155/2014/686879. PMID:
24741617. PMCID:
PMC3987978.
Article
51. Press OA, Zhang W, Gordon MA, Yang D, Lurje G, Iqbal S, et al. 2008; Gender-related survival differences associated with EGFR polymorphisms in metastatic colon cancer. Cancer Res. 68:3037–3042. DOI:
10.1158/0008-5472.CAN-07-2718. PMID:
18413774.
Article
54. Milette S, Hashimoto M, Perrino S, Qi S, Chen M, Ham B, et al. 2019; Sexual dimorphism and the role of estrogen in the immune microenvironment of liver metastases. Nat Commun. 10:5745. DOI:
10.1038/s41467-019-13571-x. PMID:
31848339. PMCID:
PMC6917725.
Article
55. Su BB, Shi H, Wan J. 2012; Role of serum carcinoembryonic antigen in the detection of colorectal cancer before and after surgical resection. World J Gastroenterol. 18:2121–2126. DOI:
10.3748/wjg.v18.i17.2121. PMID:
22563201. PMCID:
PMC3342612.
Article
56. Hammarström S. 1999; The carcinoembryonic antigen (CEA) family: structures, suggested functions and expression in normal and malignant tissues. Sem Cancer Biol. 9:67–81. DOI:
10.1006/scbi.1998.0119. PMID:
10202129.
Article
57. Kamphues C, Andreatos N, Kruppa J, Buettner S, Wang J, Sasaki K, et al. 2021; The optimal cut-off values for tumor size, number of lesions, and CEA levels in patients with surgically treated colorectal cancer liver metastases: an international, multi-institutional study. J Surg Oncol. 123:939–948. DOI:
10.1002/jso.26361. PMID:
33400818.
Article
60. Hall C, Clarke L, Pal A, Buchwald P, Eglinton T, Wakeman C, et al. 2019; A review of the role of carcinoembryonic antigen in clinical practice. Ann Coloproctol. 35:294–305. DOI:
10.3393/ac.2019.11.13. PMID:
31937069. PMCID:
PMC6968721.
Article
61. Enquist IB, Good Z, Jubb AM, Fuh G, Wang X, Junttila MR, et al. 2014; Lymph node-independent liver metastasis in a model of metastatic colorectal cancer. Nat Commun. 5:3530. DOI:
10.1038/ncomms4530. PMID:
24667486.
Article
62. Ahana P, Kavitha G. 2022; Radiomic features based severity prediction in dementia MR images using hybrid SSA-PSO optimizer and multi-class SVM classifier. IRBM. 43:549–560. DOI:
10.1016/j.irbm.2022.05.003.
Article
63. Awad M, Khanna R. Awad M, Khanna R, editors. 2015. Support vector machines for classification. Efficient Learning Machines: Theories, Concepts, and Applications for Engineers and System Designers. p. 39–66. Apress;DOI:
10.1007/978-1-4302-5990-9_3.
Article
64. Prasad AM, Iverson LR, Liaw A. 2006; Newer classification and regression tree techniques: bagging and random forests for ecological prediction. Ecosystems. 9:181–199. DOI:
10.1007/s10021-005-0054-1.
Article