1. Sackett DL, Straus SE, Richardson WS, Rosenberg W, Haynes RB. Evidence-Based Medicine: How to Practice and Teach EBM. 2nd ed. Edinburgh, UK: Churchill Livingstone;2000. p. 173–177.
2. Stanley K. Design of randomized controlled trials. Circulation. 2007; 115(9):1164–1169. PMID:
17339574.
3. Sherman RE, Anderson SA, Dal Pan GJ, Gray GW, Gross T, Hunter NL, et al. Real-world evidence - what is it and what can it tell us? N Engl J Med. 2016; 375(23):2293–2297. PMID:
27959688.
4. Kim HS, Kim JH. Proceed with caution when using real world data and real world evidence. J Korean Med Sci. 2019; 34(4):e28. PMID:
30686950.
5. Klonoff DC. The expanding role of real-world evidence trials in health care decision making. J Diabetes Sci Technol. 2020; 14(1):174–179. PMID:
30841738.
6. Jager KJ, Zoccali C, Macleod A, Dekker FW. Confounding: what it is and how to deal with it. Kidney Int. 2008; 73(3):256–260. PMID:
17978811.
7. Grimes DA, Schulz KF. Bias and causal associations in observational research. Lancet. 2002; 359(9302):248–252. PMID:
11812579.
8. Edelman SV, Polonsky WH. Type 2 diabetes in the real world: the elusive nature of glycemic control. Diabetes Care. 2017; 40(11):1425–1432. PMID:
28801473.
9. Brod M, Rana A, Barnett AH. Adherence patterns in patients with type 2 diabetes on basal insulin analogues: missed, mistimed and reduced doses. Curr Med Res Opin. 2012; 28(12):1933–1946. PMID:
23150949.
10. Collins R, Bowman L, Landray M, Peto R. The magic of randomization versus the myth of real-world evidence. N Engl J Med. 2020; 382(7):674–678. PMID:
32053307.
11. Andrade S. Compliance in the real world. Value Health. 1998; 1(3):171–173. PMID:
16674348.
12. Ard J, Cannon A, Lewis CE, Lofton H, Vang Skjøth T, Stevenin B, et al. Efficacy and safety of liraglutide 3.0 mg for weight management are similar across races: subgroup analysis across the SCALE and phase II randomized trials. Diabetes Obes Metab. 2016; 18(4):430–435. PMID:
26744025.
13. Park JH, Kim JY, Choi JH, Park HS, Shin HY, Lee JM, et al. Effectiveness of liraglutide 3 mg for the treatment of obesity in a real-world setting without intensive lifestyle intervention. Int J Obes. 2021; 45(4):776–786.
14. Zabor EC, Kaizer AM, Hobbs BP. Randomized controlled trials. Chest. 2020; 158(1S):S79–S87. PMID:
32658656.
15. Benson K, Hartz AJ. A comparison of observational studies and randomized, controlled trials. N Engl J Med. 2000; 342(25):1878–1886. PMID:
10861324.
16. Kim HS, Lee S, Kim JH. Real-world evidence versus randomized controlled trial: clinical research based on electronic medical records. J Korean Med Sci. 2018; 33(34):e213. PMID:
30127705.
17. Kim HS, Kim DJ, Yoon KH. Medical big data is not yet available: why we need realism rather than exaggeration. Endocrinol Metab (Seoul). 2019; 34(4):349–354. PMID:
31884734.
18. Harrington L. New data of the digital age: big, dark, and deep. AACN Adv Crit Care. 2017; 28(3):239–242. PMID:
28847857.
19. Hand DJ. Dark Data: Why What You Don’t Know Matters. Princeton, NJ, USA: Princeton University Press;2020.
20. Zhang C, Shin J, Ré C, Cafarella M, Niu F. Extracting databases from dark data with deepdive. Proc ACM SIGMOD Int Conf Manag Data. 2016; 2016:847–859. PMID:
28316365.
21. Suto Y. In : Stepp LM, Gilmozzi R, Hall HJ, editors. Unknowns and unknown unknowns: from dark sky to dark matter and dark energy. Proceedings of the SPIE Astronomical Telescopes + Instrumentation, Ground-based and Airborne Telescopes III, Vol 7733; 2010 June 27-July 2; San Diego, CA, USA. Bellingham, WA, USA: SPIE;2010. p. 1–11.
22. Faurholt-Jepsen M, Busk J, Frost M, Vinberg M, Christensen EM, Winther O, et al. Voice analysis as an objective state marker in bipolar disorder. Transl Psychiatry. 2016; 6(7):e856. PMID:
27434490.
23. Truesdell AG, Sauer AJ, Alasnag M. Known knowns, known unknowns, and unknown unknowns. Cardiovasc Revasc Med. 2020; 21(12):1472–1473. PMID:
32988744.
24. Koltay T. Data governance, data literacy and the management of data quality. IFLA J. 2016; 42(4):303–312.
25. Shin SI, Kwon MM. Dark data: why what you don’t know matters. J Inf Technol Case Appl Res. 2023; 25(2):112–118.
26. Perini DJ, Batarseh FA, Tolman A, Anuga A, Nguyen MA. 16 - Bringing dark data to light with AI for evidence-based policymaking. Batarseh FA, Freeman LJ, editors. AI Assurance: Towards Trustworthy, Explainable, Safe, and Ethical AI. 1st ed. Cambridge, MA, USA: Academic Press;2022. p. 531–557.
27. Qiu S, Liu Q, Zhou S, Wu C. Review of artificial intelligence adversarial attack and defense technologies. Appl Sci. 2019; 9(5):909.
28. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, et al. Going deeper with convolutions. In : Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2015 June 7-12; Boston, MA, USA. New York, NY, USA: IEEE;2015. p. 1–9.
29. Zednik C. Solving the black box problem: a normative framework for explainable artificial intelligence. Philos Technol. 2021; 34(2):265–288.
30. Koltay T. Data literacy for researchers and data librarians. J Librarian Inform Sci. 2017; 49(1):3–14.
31. Lee JA. Data, information, and knowledge. Lancet Oncol. 2002; 3(6):384. PMID:
12107028.
32. Georgiou A. Data information and knowledge: the health informatics model and its role in evidence-based medicine. J Eval Clin Pract. 2002; 8(2):127–130. PMID:
12180361.
33. Hänsel K, Dudgeon SN, Cheung KH, Durant TJS, Schulz WL. From data to wisdom: biomedical knowledge graphs for real-world data insights. J Med Syst. 2023; 47(1):65. PMID:
37195430.