7. Madani M, Behzadi MM, Nabavi S. 2022; The role of deep learning in advancing breast cancer detection using different imaging modalities: a systematic review. Cancers (Basel). 14:5334. DOI:
10.3390/cancers14215334. PMID:
36358753. PMCID:
PMC9655692.
Article
9. Al-Antari MA, Al-Masni MA, Choi MT, Han SM, Kim TS. 2018; A fully integrated computer-aided diagnosis system for digital X-ray mammograms via deep learning detection, segmentation, and classification. Int J Med Inform. 117:44–54. DOI:
10.1016/j.ijmedinf.2018.06.003. PMID:
30032964.
Article
10. Rodriguez-Ruiz A, Lång K, Gubern-Merida A, Teuwen J, Broeders M, Gennaro G, et al. 2019; Can we reduce the workload of mammographic screening by automatic identification of normal exams with artificial intelligence? A feasibility study. Eur Radiol. 29:4825–32. DOI:
10.1007/s00330-019-06186-9. PMID:
30993432. PMCID:
PMC6682851.
Article
12. Pesapane F, Codari M, Sardanelli F. 2018; Artificial intelligence in medical imaging: threat or opportunity? Radiologists again at the forefront of innovation in medicine. Eur Radiol Exp. 2:35. DOI:
10.1186/s41747-018-0061-6. PMID:
30353365. PMCID:
PMC6199205.
Article
16. Chartrand G, Cheng PM, Vorontsov E, Drozdzal M, Turcotte S, Pal CJ, et al. 2017; Deep learning: a primer for radiologists. Radiographics. 37:2113–31. DOI:
10.1148/rg.2017170077. PMID:
29131760.
17. Akkus Z, Cai J, Boonrod A, Zeinoddini A, Weston AD, Philbrick KA, et al. 2019; A Survey of deep-learning applications in ultrasound: artificial intelligence-powered ultrasound for improving clinical workflow. J Am Coll Radiol. 16(9 Pt B):1318–28. DOI:
10.1016/j.jacr.2019.06.004. PMID:
31492410.
18. Long J, Shelhamer E, Darrell T. 2015. Jun. 7-12. Fully convolutional networks for semantic segmentation. Paper presented at: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, USA: 3431–40. DOI:
10.1109/CVPR.2015.7298965.
19. Badrinarayanan V, Kendall A, Cipolla R. 2017; SegNet: a deep convolutional encoder-decoder architecture for image segmen-tation. IEEE Trans Pattern Anal Mach Intell. 39:2481–95. DOI:
10.1109/TPAMI.2016.2644615. PMID:
28060704.
20. Ronneberger O, Fischer P, Brox T. 2015. Oct. 5-9. U-Net: convolutional networks for biomedical image segmentation. Paper presented at: Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015: 18th International Conference. Munich, Germany: 234–41. DOI:
10.1007/978-3-319-24574-4_28.
21. Kumar V, Webb JM, Gregory A, Denis M, Meixner DD, Bayat M, et al. 2018; Automated and real-time segmentation of suspicious breast masses using convolutional neural network. PLoS One. 13:e0195816. DOI:
10.1371/journal.pone.0195816. PMID:
29768415. PMCID:
PMC5955504.
Article
22. Hu Y, Guo Y, Wang Y, Yu J, Li J, Zhou S, et al. 2019; Automatic tumor segmentation in breast ultrasound images using a dilated fully convolutional network combined with an active contour model. Med Phys. 46:215–28. DOI:
10.1002/mp.13268. PMID:
30374980.
Article
23. Eghtedari M, Chong A, Rakow-Penner R, Ojeda-Fournier H. 2021; Current status and future of BI-RADS in multimodality imaging, from the AJR special series on radiology reporting and data systems. AJR Am J Roentgenol. 216:860–73. DOI:
10.2214/AJR.20.24894. PMID:
33295802.
24. Hsu SM, Kuo WH, Kuo FC, Liao YY. 2019; Breast tumor classification using different features of quantitative ultrasound parametric images. Int J Comput Assist Radiol Surg. 14:623–33. DOI:
10.1007/s11548-018-01908-8. PMID:
30617720.
Article
25. Zhang Q, Xiao Y, Dai W, Suo J, Wang C, Shi J, et al. 2016; Deep learning based classification of breast tumors with shear-wave elastography. Ultrasonics. 72:150–7. DOI:
10.1016/j.ultras.2016.08.004. PMID:
27529139.
Article
26. Park HJ, Kim SM, La Yun B, Jang M, Kim B, Jang JY, et al. 2019; A computer-aided diagnosis system using artificial intelligence for the diagnosis and characterization of breast masses on ultrasound: added value for the inexperienced breast radio-logist. Medicine (Baltimore). 98:e14146. DOI:
10.1097/MD.0000000000014146. PMID:
30653149. PMCID:
PMC6370030.
27. Choi JH, Kang BJ, Baek JE, Lee HS, Kim SH. 2018; Application of computer-aided diagnosis in breast ultrasound interpretation: improvements in diagnostic performance according to reader experience. Ultrasonography. 37:217–25. DOI:
10.14366/usg.17046. PMID:
28992680. PMCID:
PMC6044219.
Article
28. Ciritsis A, Rossi C, Eberhard M, Marcon M, Becker AS, Boss A. 2019; Automatic classification of ultrasound breast lesions using a deep convolutional neural network mimicking human decision-making. Eur Radiol. 29:5458–68. DOI:
10.1007/s00330-019-06118-7. PMID:
30927100.
Article
29. Becker AS, Mueller M, Stoffel E, Marcon M, Ghafoor S, Boss A. 2018; Classification of breast cancer in ultrasound imaging using a generic deep learning analysis software: a pilot study. Br J Radiol. 91:20170576. DOI:
10.1259/bjr.20170576. PMID:
29215311. PMCID:
PMC5965470.
30. Han S, Kang HK, Jeong JY, Park MH, Kim W, Bang WC, et al. 2017; A deep learning framework for supporting the classification of breast lesions in ultrasound images. Phys Med Biol. 62:7714–28. DOI:
10.1088/1361-6560/aa82ec. PMID:
28753132.
Article
33. Sechopoulos I, Teuwen J, Mann R. 2021; Artificial intelligence for breast cancer detection in mammography and digital breast tomosynthesis: state of the art. Semin Cancer Biol. 72:214–25. DOI:
10.1016/j.semcancer.2020.06.002. PMID:
32531273.
Article
34. Adachi M, Fujioka T, Mori M, Kubota K, Kikuchi Y, Xiaotong W, et al. 2020; Detection and diagnosis of breast cancer using artificial intelligence based assessment of maximum intensity projection dynamic contrast-enhanced magnetic resonance images. Diagnostics (Basel). 10:330. DOI:
10.3390/diagnostics10050330. PMID:
32443922. PMCID:
PMC7277981.
Article