J Surg Ultrasound.  2023 May;10(1):8-13. 10.46268/jsu.2023.10.1.8.

Diagnostic Utility of Artificial Intelligence in Breast Ultrasound

Affiliations
  • 1Division of BreastㆍThyroid Surgery, Department of Surgery, Jeonbuk National University Medical School, Jeonju, Korea

Abstract

Breast cancer is the most commonly diagnosed cancer in women and its incidence and the mortality associated with it have increased over the years. Early detection of breast cancer via various imaging modalities can significantly improve the prognosis of patients. Ultrasound is a useful imaging tool for breast lesion characterization due to its acceptable diagnostic performance and non-invasive and real-time capabilities. However, one of the major drawbacks of ultrasound imaging is operator dependence. Artificial intelligence (AI), particularly deep learning, is gaining extensive attention for its excellent performance in image recognition. AI can make a quantitative assessment by recognizing imaging information, thereby improving ultrasound performance in the diagnosis of breast cancer lesions. The use of AI for breast ultrasound in clinical practice is extremely important, as it saves time, reduces radiologist fatigue, and compensates for a lack of experience and skill in some cases. This review article discusses the basic technical knowledge required, the algorithms of AI for breast ultrasound, and the application of AI in image identification, segmentation, extraction, and classification. In addition, we also discuss the future perspectives for the application of AI in breast ultrasound.

Keyword

Artificial intelligence; Deep learning; Breast; Ultrasonography

Figure

  • Fig. 1 Structure of convolutional neural network.

  • Fig. 2 Number of publications per year.

  • Fig. 3 Schematic diagram of artificial intelligence, machine learning, deep learning.


Reference

1. Siegel RL, Miller KD, Jemal A. 2018; Cancer statistics, 2018. CA Cancer J Clin. 68:7–30. DOI: 10.3322/caac.21442. PMID: 29313949.
Article
2. Kornecki A. 2011; Current status of breast ultrasound. Can Assoc Radiol J. 62:31–40. DOI: 10.1016/j.carj.2010.07.006. PMID: 20870376.
Article
3. Hooley RJ, Scoutt LM, Philpotts LE. 2013; Breast ultrasonography: state of the art. Radiology. 268:642–59. DOI: 10.1148/radiol.13121606. PMID: 23970509.
Article
4. Le EPV, Wang Y, Huang Y, Hickman S, Gilbert FJ. 2019; Artificial intelligence in breast imaging. Clin Radiol. 74:357–66. DOI: 10.1016/j.crad.2019.02.006. PMID: 30898381.
Article
5. Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts HJWL. 2018; Artificial intelligence in radiology. Nat Rev Cancer. 18:500–10. DOI: 10.1038/s41568-018-0016-5. PMID: 29777175. PMCID: PMC6268174.
Article
6. Fujioka T, Mori M, Kubota K, Oyama J, Yamaga E, Yashima Y, et al. 2020; The utility of deep learning in breast ultrasonic imaging: a review. Diagnostics (Basel). 10:1055. DOI: 10.3390/diagnostics10121055. PMID: 33291266. PMCID: PMC7762151.
Article
7. Madani M, Behzadi MM, Nabavi S. 2022; The role of deep learning in advancing breast cancer detection using different imaging modalities: a systematic review. Cancers (Basel). 14:5334. DOI: 10.3390/cancers14215334. PMID: 36358753. PMCID: PMC9655692.
Article
8. Obermeyer Z, Emanuel EJ. 2016; Predicting the future - big data, machine learning, and clinical medicine. N Engl J Med. 375:1216–9. DOI: 10.1056/NEJMp1606181. PMID: 27682033. PMCID: PMC5070532.
Article
9. Al-Antari MA, Al-Masni MA, Choi MT, Han SM, Kim TS. 2018; A fully integrated computer-aided diagnosis system for digital X-ray mammograms via deep learning detection, segmentation, and classification. Int J Med Inform. 117:44–54. DOI: 10.1016/j.ijmedinf.2018.06.003. PMID: 30032964.
Article
10. Rodriguez-Ruiz A, Lång K, Gubern-Merida A, Teuwen J, Broeders M, Gennaro G, et al. 2019; Can we reduce the workload of mammographic screening by automatic identification of normal exams with artificial intelligence? A feasibility study. Eur Radiol. 29:4825–32. DOI: 10.1007/s00330-019-06186-9. PMID: 30993432. PMCID: PMC6682851.
Article
11. Tagliafico AS, Piana M, Schenone D, Lai R, Massone AM, Houssami N. 2020; Overview of radiomics in breast cancer diagnosis and prognostication. Breast. 49:74–80. DOI: 10.1016/j.breast.2019.10.018. PMID: 31739125. PMCID: PMC7375670.
Article
12. Pesapane F, Codari M, Sardanelli F. 2018; Artificial intelligence in medical imaging: threat or opportunity? Radiologists again at the forefront of innovation in medicine. Eur Radiol Exp. 2:35. DOI: 10.1186/s41747-018-0061-6. PMID: 30353365. PMCID: PMC6199205.
Article
13. LeCun Y, Bengio Y, Hinton G. 2015; Deep learning. Nature. 521:436–44. DOI: 10.1038/nature14539. PMID: 26017442. PMCID: PMC10191635.
Article
14. Yasaka K, Akai H, Kunimatsu A, Kiryu S, Abe O. 2018; Deep learning with convolutional neural network in radiology. Jpn J Radiol. 36:257–72. DOI: 10.1007/s11604-018-0726-3. PMID: 29498017.
Article
15. Angermueller C, Pärnamaa T, Parts L, Stegle O. 2016; Deep learning for computational biology. Mol Syst Biol. 12:878. DOI: 10.15252/msb.20156651. PMID: 27474269. PMCID: PMC4965871.
Article
16. Chartrand G, Cheng PM, Vorontsov E, Drozdzal M, Turcotte S, Pal CJ, et al. 2017; Deep learning: a primer for radiologists. Radiographics. 37:2113–31. DOI: 10.1148/rg.2017170077. PMID: 29131760.
17. Akkus Z, Cai J, Boonrod A, Zeinoddini A, Weston AD, Philbrick KA, et al. 2019; A Survey of deep-learning applications in ultrasound: artificial intelligence-powered ultrasound for improving clinical workflow. J Am Coll Radiol. 16(9 Pt B):1318–28. DOI: 10.1016/j.jacr.2019.06.004. PMID: 31492410.
18. Long J, Shelhamer E, Darrell T. 2015. Jun. 7-12. Fully convolutional networks for semantic segmentation. Paper presented at: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, USA: 3431–40. DOI: 10.1109/CVPR.2015.7298965.
19. Badrinarayanan V, Kendall A, Cipolla R. 2017; SegNet: a deep convolutional encoder-decoder architecture for image segmen-tation. IEEE Trans Pattern Anal Mach Intell. 39:2481–95. DOI: 10.1109/TPAMI.2016.2644615. PMID: 28060704.
20. Ronneberger O, Fischer P, Brox T. 2015. Oct. 5-9. U-Net: convolutional networks for biomedical image segmentation. Paper presented at: Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015: 18th International Conference. Munich, Germany: 234–41. DOI: 10.1007/978-3-319-24574-4_28.
21. Kumar V, Webb JM, Gregory A, Denis M, Meixner DD, Bayat M, et al. 2018; Automated and real-time segmentation of suspicious breast masses using convolutional neural network. PLoS One. 13:e0195816. DOI: 10.1371/journal.pone.0195816. PMID: 29768415. PMCID: PMC5955504.
Article
22. Hu Y, Guo Y, Wang Y, Yu J, Li J, Zhou S, et al. 2019; Automatic tumor segmentation in breast ultrasound images using a dilated fully convolutional network combined with an active contour model. Med Phys. 46:215–28. DOI: 10.1002/mp.13268. PMID: 30374980.
Article
23. Eghtedari M, Chong A, Rakow-Penner R, Ojeda-Fournier H. 2021; Current status and future of BI-RADS in multimodality imaging, from the AJR special series on radiology reporting and data systems. AJR Am J Roentgenol. 216:860–73. DOI: 10.2214/AJR.20.24894. PMID: 33295802.
24. Hsu SM, Kuo WH, Kuo FC, Liao YY. 2019; Breast tumor classification using different features of quantitative ultrasound parametric images. Int J Comput Assist Radiol Surg. 14:623–33. DOI: 10.1007/s11548-018-01908-8. PMID: 30617720.
Article
25. Zhang Q, Xiao Y, Dai W, Suo J, Wang C, Shi J, et al. 2016; Deep learning based classification of breast tumors with shear-wave elastography. Ultrasonics. 72:150–7. DOI: 10.1016/j.ultras.2016.08.004. PMID: 27529139.
Article
26. Park HJ, Kim SM, La Yun B, Jang M, Kim B, Jang JY, et al. 2019; A computer-aided diagnosis system using artificial intelligence for the diagnosis and characterization of breast masses on ultrasound: added value for the inexperienced breast radio-logist. Medicine (Baltimore). 98:e14146. DOI: 10.1097/MD.0000000000014146. PMID: 30653149. PMCID: PMC6370030.
27. Choi JH, Kang BJ, Baek JE, Lee HS, Kim SH. 2018; Application of computer-aided diagnosis in breast ultrasound interpretation: improvements in diagnostic performance according to reader experience. Ultrasonography. 37:217–25. DOI: 10.14366/usg.17046. PMID: 28992680. PMCID: PMC6044219.
Article
28. Ciritsis A, Rossi C, Eberhard M, Marcon M, Becker AS, Boss A. 2019; Automatic classification of ultrasound breast lesions using a deep convolutional neural network mimicking human decision-making. Eur Radiol. 29:5458–68. DOI: 10.1007/s00330-019-06118-7. PMID: 30927100.
Article
29. Becker AS, Mueller M, Stoffel E, Marcon M, Ghafoor S, Boss A. 2018; Classification of breast cancer in ultrasound imaging using a generic deep learning analysis software: a pilot study. Br J Radiol. 91:20170576. DOI: 10.1259/bjr.20170576. PMID: 29215311. PMCID: PMC5965470.
30. Han S, Kang HK, Jeong JY, Park MH, Kim W, Bang WC, et al. 2017; A deep learning framework for supporting the classification of breast lesions in ultrasound images. Phys Med Biol. 62:7714–28. DOI: 10.1088/1361-6560/aa82ec. PMID: 28753132.
Article
31. Brunetti N, Calabrese M, Martinoli C, Tagliafico AS. 2022; Artificial intelligence in breast ultrasound: from diagnosis to prognosis-a rapid review. Diagnostics (Basel). 13:58. DOI: 10.3390/diagnostics13010058. PMID: 36611350. PMCID: PMC9818181.
Article
32. Lei YM, Yin M, Yu MH, Yu J, Zeng SE, Lv WZ, et al. 2021; Artificial intelligence in medical imaging of the breast. Front Oncol. 11:600557. DOI: 10.3389/fonc.2021.600557. PMID: 34367938. PMCID: PMC8339920.
Article
33. Sechopoulos I, Teuwen J, Mann R. 2021; Artificial intelligence for breast cancer detection in mammography and digital breast tomosynthesis: state of the art. Semin Cancer Biol. 72:214–25. DOI: 10.1016/j.semcancer.2020.06.002. PMID: 32531273.
Article
34. Adachi M, Fujioka T, Mori M, Kubota K, Kikuchi Y, Xiaotong W, et al. 2020; Detection and diagnosis of breast cancer using artificial intelligence based assessment of maximum intensity projection dynamic contrast-enhanced magnetic resonance images. Diagnostics (Basel). 10:330. DOI: 10.3390/diagnostics10050330. PMID: 32443922. PMCID: PMC7277981.
Article
35. Wu GG, Zhou LQ, Xu JW, Wang JY, Wei Q, Deng YB, et al. 2019; Artificial intelligence in breast ultrasound. World J Radiol. 11:19–26. DOI: 10.4329/wjr.v11.i2.19. PMID: 30858931. PMCID: PMC6403465.
Article
Full Text Links
  • JSU
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr