Korean Breast Cancer Society. Breast Cancer Facts & Figures 2018. Korean Breast Cancer Society;Seoul:
Stavros AT., Thickman D., Rapp CL., Dennis MA., Parker SH., Sisney GA. 1995. Solid breast nodules: use of sonography to distinguish between benign and malignant lesions. Radiology. 196:123–34. DOI:
10.1148/radiology.196.1.7784555. PMID:
7784555.
Article
Kim YJ., Choi HY., Moon BI., Lee SN. 2006. Categorization and evaluation of usefulness of breast lesions with using ultrasound BI-RADS (Breast Imaging Reporting and Data system). J Korean Radiol Soc. 54:313–8. DOI:
10.3348/jkrs.2006.54.4.313.
Article
Pan J., Dogan BE., Carkaci S., Santiago L., Arribas E., Cantor SB, et al. 2013. Comparing performance of the CADstream and the DynaCAD breast MRI CAD systems : CADstream vs. DynaCAD in breast MRI. J Digit Imaging. 26:971–6. DOI:
10.1007/s10278-013-9602-y. PMID:
23589186. PMCID:
PMC3782607.
Article
Kolb TM., Lichy J., Newhouse JH. 2002. Comparison of the performance of screening mammography, physical examination, and breast US and evaluation of factors that influence them: an analysis of 27,825 patient evaluations. Radiology. 225:165–75. DOI:
10.1148/radiol.2251011667. PMID:
12355001.
Article
Brem RF., Lenihan MJ., Lieberman J., Torrente J. 2015. Screening breast ultrasound: past, present, and future. AJR Am J Roentgenol. 204:234–40. DOI:
10.2214/AJR.13.12072. PMID:
25615743.
Article
Kopans DB. 2004. Sonography should not be used for breast cancer screening until its efficacy has been proven scientifically. AJR Am J Roentgenol. 182:489–91. DOI:
10.2214/ajr.182.2.1820489. PMID:
14736687.
Article
Galperin M., Andre MP., Barker CH., Olson LK., O'Boyle M., Richman K, et al. 2009. Reproducibility of image analysis for breast ultrasound computer-aided diagnosis. Acoustical Imaging. 29:397–402. DOI:
10.1007/978-1-4020-8823-0_55.
Article
Sonka M., Hlavac V., Boyle R. 2014. Image Processing, Analysis, and Machine Vision. 4th ed. Cengage Learning;Boston:
Article
Chen CM., Chou YH., Han KC., Hung GS., Tiu CM., Chiou HJ, et al. 2003. Breast lesions on sonograms: computer-aided diagnosis with nearly setting-independent features and artificial neural networks. Radiology. 226:504–14. DOI:
10.1148/radiol.2262011843. PMID:
12563146.
Article
Fujita H., Uchiyama Y., Nakagawa T., Fukuoka D., Hatanaka Y., Hara T, et al. 2008. Computer-aided diagnosis: the emerging of three CAD systems induced by Japanese health care needs. Comput Methods Programs Biomed. 92:238–48. DOI:
10.1016/j.cmpb.2008.04.003. PMID:
18514362.
Article
Choi JH., Kang BJ., Baek JE., Lee HS., Kim SH. 2018. Application of computer-aided diagnosis in breast ultrasound interpretation: improvements in diagnostic performance according to reader experience. Ultrasonography. 37:217–25. DOI:
10.14366/usg.17046. PMID:
28992680. PMCID:
PMC6044219.
Article
Kim K., Song MK., Kim EK., Yoon JH. 2017. Clinical application of S-Detect to breast masses on ultrasonography: a study evaluating the diagnostic performance and agreement with a dedicated breast radiologist. Ultrasonography. 36:3–9. DOI:
10.14366/usg.16012. PMID:
27184656. PMCID:
PMC5207353.
Article
Shin HJ., Kim HH., Cha JH., Park JH., Lee KE., Kim JH. 2011. Automated ultrasound of the breast for diagnosis: interobserver agreement on lesion detection and characterization. AJR Am J Roentgenol. 197:747–54. DOI:
10.2214/AJR.10.5841. PMID:
21862820.
Article