1. Pfaller MA, Diekema DJ, Gibbs DL, Newell VA, Ellis D, Tullio V, et al. Results from the ARTEMIS DISK Global Antifungal Surveillance Study, 1997 to 2007: a 10.5-year analysis of susceptibilities of
Candida species to fluconazole and voriconazole as determined by CLSI standardized disk diffusion. J Clin Microbiol. 2010; 48:1366–77. DOI:
10.1128/JCM.02117-09. PMID:
20164282. PMCID:
PMC2849609.
Article
2. Nishimoto AT, Sharma C, Rogers PD. 2020; Molecular and genetic basis of azole antifungal resistance in the opportunistic pathogenic fungus
Candida albicans. J Antimicrob Chemother. 75:257–70. DOI:
10.1093/jac/dkz400. PMID:
31603213. PMCID:
PMC8204710.
3. Collins LM, Moore R, Sobel JD. 2020; Prognosis and long-term outcome of women with idiopathic recurrent vulvovaginal candidiasis caused by albicans. J Low Genit Tract Dis. 24:48–52. DOI:
10.1097/LGT.0000000000000496. PMID:
31860575.
Article
4. Pfaller MA, Andes D, Diekema DJ, Espinel-Ingroff A, Sheehan D. CLSI Subcommittee for Antifungal Susceptibility Testing. 2010; Wild-type MIC distributions, epidemiological cutoff values and species-specific clinical breakpoints for fluconazole and
Candida: time for harmonization of CLSI and EUCAST broth microdilution methods. Drug Resist Updat. 13:180–95. DOI:
10.1016/j.drup.2010.09.002. PMID:
21050800.
5. Perlin DS, Wiederhold NP. 2017; Culture-independent molecular methods for detection of antifungal resistance mechanisms and fungal identification. J Infect Dis. 216(S3):S458–65. DOI:
10.1093/infdis/jix121. PMID:
28911041.
6. Morio F, Pagniez F, Besse M, Gay-Andrieu F, Miegeville M, Le Pape P. 2013; Deciphering azole resistance mechanisms with a focus on transcription factor-encoding genes
TAC1,
MRR1 and
UPC2 in a set of fluconazole-resistant clinical isolates of
Candida albicans. Int J Antimicrob Agents. 42:410–5. DOI:
10.1016/j.ijantimicag.2013.07.013. PMID:
24051054.
7. Dunkel N, Blass J, Rogers PD, Morschhäuser J. 2008; Mutations in the multi-drug resistance regulator
MRR1, followed by loss of heterozygosity, are the main cause of
MDR1 overexpression in fluconazole-resistant
Candida albicans strains. Mol Microbiol. 69:827–40. DOI:
10.1111/j.1365-2958.2008.06309.x. PMID:
18577180. PMCID:
PMC2678921.
8. Pfaller MA, Diekema DJ, Sheehan DJ. 2006; Interpretive breakpoints for fluconazole and
Candida revisited: a blueprint for the future of antifungal susceptibility testing. Clin Microbiol Rev. 19:435–47. DOI:
10.1128/CMR.19.2.435-447.2006. PMID:
16614256. PMCID:
PMC1471993.
9. Lockhart SR, Iqbal N, Cleveland AA, Farley MM, Harrison LH, Bolden CB, et al. 2012; Species identification and antifungal susceptibility testing of
Candida bloodstream isolates from population-based surveillance studies in two U.S. cities from 2008 to 2011. J Clin Microbiol. 50:3435–42. DOI:
10.1128/JCM.01283-12. PMID:
22875889. PMCID:
PMC3486211.
10. Castanheira M, Deshpande LM, Davis AP, Rhomberg PR, Pfaller MA. 2017; Monitoring antifungal resistance in a global collection of invasive yeasts and molds: application of CLSI epidemiological cutoff values and whole-genome sequencing analysis for detection of azole resistance in
Candida albicans. Antimicrob Agents Chemother. 61:e00906–17. DOI:
10.1128/AAC.00906-17. PMID:
28784671. PMCID:
PMC5610521.
11. Lee HS, Shin JH, Choi MJ, Won EJ, Kee SJ, Kim SH, et al. 2017; Comparison of the Bruker Biotyper and VITEK MS matrix-assisted laser desorption/ionization time-of-flight mass spectrometry systems using a formic acid extraction method to identify common and uncommon yeast isolates. Ann Lab Med. 37:223–30. DOI:
10.3343/alm.2017.37.3.223. PMID:
28224768. PMCID:
PMC5339094.
Article
12. Jeon S, Shin JH, Lim HJ, Choi MJ, Byun SA, Lee D, et al. 2021; Disk diffusion susceptibility testing for the rapid detection of fluconazole resistance in
Candida isolates. Ann Lab Med. 41:559–67. DOI:
10.3343/alm.2021.41.6.559. PMID:
34108283. PMCID:
PMC8203430.
Article
13. Park S, Perlin DS. 2005; Establishing surrogate markers for fluconazole resistance in
Candida albicans. Microb Drug Resist. 11:232–8. DOI:
10.1089/mdr.2005.11.232. PMID:
16201925.
14. Shin JH, Bougnoux ME, d'Enfert C, Kim SH, Moon CJ, Joo MY, et al. 2011; Genetic diversity among Korean
Candida albicans bloodstream isolates: assessment by multilocus sequence typing and restriction endonuclease analysis of genomic DNA by use of BssHII. J Clin Microbiol. 49:2572–7. DOI:
10.1128/JCM.02153-10. PMID:
21562112. PMCID:
PMC3147862.
Article
15. Kwon YJ, Won EJ, Jeong SH, Shin KS, Shin JH, Kim YR, et al. 2021; Dynamics and predictors of mortality due to candidemia caused by different
Candida species: comparison of intensive care unit-associated candidemia (ICUAC) and non-ICUAC. J Fungi (Basel). 7:597. DOI:
10.3390/jof7080597. PMID:
34436136. PMCID:
PMC8397010.
Article
16. Flowers SA, Colón B, Whaley SG, Schuler MA, Rogers PD. 2015; Contribution of clinically derived mutations in
ERG11 to azole resistance in
Candida albicans. Antimicrob Agents Chemother. 59:450–60. DOI:
10.1128/AAC.03470-14. PMID:
25385095. PMCID:
PMC4291385.
Article
17. Xu Y, Chen L, Li C. 2008; Susceptibility of clinical isolates of
Candida species to fluconazole and detection of
Candida albicans ERG11 mutations. J Antimicrob Chemother. 61:798–804. DOI:
10.1093/jac/dkn015. PMID:
18218640.
Article
18. Coste A, Selmecki A, Forche A, Diogo D, Bougnoux ME, d'Enfert C, et al. 2007; Genotypic evolution of azole resistance mechanisms in sequential
Candida albicans isolates. Eukaryot Cell. 6:1889–904. DOI:
10.1128/EC.00151-07. PMID:
17693596. PMCID:
PMC2043391.
Article
19. Coste AT, Crittin J, Bauser C, Rohde B, Sanglard D. 2009; Functional analysis of cis- and trans-acting elements of the
Candida albicans CDR2 promoter with a novel promoter reporter system. Eukaryot Cell. 8:1250–67. DOI:
10.1128/EC.00069-09. PMID:
19561319. PMCID:
PMC2725566.
Article
20. Jensen RH, Astvad KM, Silva LV, Sanglard D, Jørgensen R, Nielsen KF, et al. 2015; Stepwise emergence of azole, echinocandin and amphotericin B multidrug resistance in vivo in
Candida albicans orchestrated by multiple genetic alterations. J Antimicrob Chemother. 70:2551–5. DOI:
10.1093/jac/dkv140. PMID:
26017038. PMCID:
PMC4553713.
21. Flowers SA, Barker KS, Berkow EL, Toner G, Chadwick SG, Gygax SE, et al. 2012; Gain-of-function mutations in
UPC2 are a frequent cause of
ERG11 upregulation in azole-resistant clinical isolates of
Candida albicans. Eukaryot Cell. 11:1289–99. DOI:
10.1128/EC.00215-12. PMID:
22923048. PMCID:
PMC3485914.
Article