Ann Lab Med.  2023 Nov;43(6):596-604. 10.3343/alm.2023.43.6.596.

Comparison of Four T-cell Assays and Two Binding Antibody Assays in SARS-CoV-2 Vaccinees With or Without Omicron Breakthrough Infection

Affiliations
  • 1Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Korea
  • 2Department of Laboratory Medicine, College of Medicine, Seoul National University, Seoul, Korea;
  • 3Department of Laboratory Medicine, Korea University Anam Hospital, Seoul, Korea
  • 4Department of Laboratory Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Korea

Abstract

Background
Several T-cell response assays for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are available; however, their comparability and correlations with antibody responses remain unclear. We compared four SARS-CoV-2 T-cell response assays and two anti-SARS-CoV-2 spike antibody assays.
Methods
We enrolled 89 participants who had received a booster dose of the BNT162b2 vaccine after two doses of the ChAdOx1 or BNT162b2 vaccine. Fifty-six participants without breakthrough infection (BI) (ChAdOx1/BNT162b2 group: N=27; BNT162b2 group: N=29) and 33 with BI were included. We evaluated two whole-blood interferon-gamma release assays (IGRAs) (QuantiFERON and Euroimmun), T-SPOT.COVID, an in-house enzyme-linked immunospot (ELISPOT) assay (targeting the spike and nucleocapsid peptides of wild-type and Omicron SARS-CoV-2), Abbott IgG II Quant, and Elecsys Anti-S, using Mann–Whitney U, Wilcoxon signed-rank, and Spearman’s correlation tests.
Results
The correlations between the IGRAs and between the ELISPOT assays (ρ=0.60–0.70) were stronger than those between the IGRAs and ELISPOT assays (ρ=0.33–0.57). T-SPOT.COVID showed a strong correlation with Omicron ELISPOT (ρ=0.70). The anti-spike antibody assays showed moderate correlations with T-SPOT.COVID, Euroimmun IGRA, and ELISPOT (ρ=0.43–0.62). Correlations tended to be higher in the BI than in the noninfected group, indicating that infection induces a stronger immune response.
Conclusions
T-cell response assays show moderate to strong correlations, particularly when using the same platform. T-SPOT.COVID exhibits potential for estimating immune responses to the Omicron variant. To accurately define SARS-CoV-2 immune status, both T-cell and B-cell response measurements are necessary.

Keyword

SARS-CoV-2; Omicron variant; Cellular immunity; Interferon-gamma release tests; Enzyme-linked immunospot assay; Humoral immunity

Cited by  2 articles

New Insights Into SARS-CoV-2-specific Antibody Levels in Kidney Transplantation Recipients After Three Vaccination Doses
Hyunhye Kang, Eun-Jee Oh
Ann Lab Med. 2024;44(1):3-5.    doi: 10.3343/alm.2024.44.1.3.

Association Between Low Anti-spike Antibody Levels After the Third Dose of SARS-CoV-2 Vaccination and Hospitalization due to Symptomatic Breakthrough Infection in Kidney Transplant Recipients
Ahram Han, Sangil Min, Eun-Ah Jo, Hajeong Lee, Yong Chul Kim, Seung Seok Han, Hee Gyung Kang, Yo Han Ahn, Inseong Oh, Eun Young Song, Jongwon Ha
Ann Lab Med. 2024;44(1):64-73.    doi: 10.3343/alm.2024.44.1.64.


Reference

1. WHO. The coronavirus (COVID-19) dashboard. https://covid19.who.int/. Updated on Jan 2023.
2. KDCA. Korea Disease and Control and Prevention Agency. COVID-19 vaccination. https://ncv.kdca.go.kr/vaccineStatus.es?mid=a11710000000. Updated on Feb 2023.
3. Planas D, Saunders N, Maes P, Guivel-Benhassine F, Planchais C, Buchrieser J, et al. 2022; Considerable escape of SARS-CoV-2 Omicron to antibody neutralization. Nature. 602:671–5. DOI: 10.1038/s41586-021-04389-z. PMID: 35016199.
Article
4. Liu L, Iketani S, Guo Y, Chan JF, Wang M, Liu L, et al. 2022; Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2. Nature. 602:676–81. DOI: 10.1038/s41586-021-04388-0. PMID: 35016198.
Article
5. GeurtsvanKessel CH, Geers D, Schmitz KS, Mykytyn AZ, Lamers MM, Bogers S, et al. 2022; Divergent SARS-CoV-2 Omicron-reactive T and B cell responses in COVID-19 vaccine recipients. Sci Immunol. 7:eabo2202. DOI: 10.1126/sciimmunol.abo2202. PMID: 35113647. PMCID: PMC8939771.
Article
6. Basile K, Rockett RJ, McPhie K, Fennell M, Johnson-Mackinnon J, Agius JE, et al. 2022; Improved neutralisation of the SARS-CoV-2 Omicron variant following a booster dose of Pfizer-BioNTech (BNT162b2) COVID-19 vaccine. Viruses. 14:2023. DOI: 10.3390/v14092023. PMID: 36146829. PMCID: PMC9501619.
Article
7. Liu J, Chandrashekar A, Sellers D, Barrett J, Jacob-Dolan C, Lifton M, et al. 2022; Vaccines elicit highly conserved cellular immunity to SARS-CoV-2 Omicron. Nature. 603:493–6. DOI: 10.1038/s41586-022-04465-y. PMID: 35102312. PMCID: PMC8930761.
Article
8. Gao Y, Cai C, Grifoni A, Müller TR, Niessl J, Olofsson A, et al. 2022; Ancestral SARS-CoV-2-specific T cells cross-recognize the Omicron variant. Nat Med. 28:472–6. DOI: 10.1038/s41591-022-01700-x. PMID: 35042228. PMCID: PMC8938268.
Article
9. Zuo J, Dowell AC, Pearce H, Verma K, Long HM, Begum J, et al. 2021; Robust SARS-CoV-2-specific T cell immunity is maintained at 6 months following primary infection. Nat Immunol. 22:620–6. DOI: 10.1038/s41590-021-00902-8. PMID: 33674800. PMCID: PMC7610739.
Article
10. Le Bert N, Chia WN, Wan WY, Teo AKJ, Chong SZ, Tan N, et al. 2021; Widely heterogeneous humoral and cellular immunity after mild SARS-CoV-2 infection in a homogeneous population of healthy young men. Emerg Microbes Infect. 10:2141–50. DOI: 10.1080/22221751.2021.1999777. PMID: 34709140. PMCID: PMC8604544.
11. Bonnet B, Chabrolles H, Archimbaud C, Brebion A, Cosme J, Dutheil F, et al. 2022; Decline of humoral and cellular immune responses against SARS-CoV-2 6 months after full BNT162b2 vaccination in hospital healthcare workers. Front Immunol. 13:842912. DOI: 10.3389/fimmu.2022.842912. PMID: 35309363. PMCID: PMC8926062.
12. Naranbhai V, Nathan A, Kaseke C, Berrios C, Khatri A, Choi S, et al. 2022; T cell reactivity to the SARS-CoV-2 Omicron variant is preserved in most but not all individuals. Cell. 185:1041–51.e6. DOI: 10.1016/j.cell.2022.01.029. PMID: 35202566. PMCID: PMC8810349.
13. Brand I, Gilberg L, Bruger J, Garí M, Wieser A, Eser TM, et al. 2021; Broad T cell targeting of structural proteins after SARS-CoV-2 infection: high throughput assessment of T cell reactivity using an automated interferon gamma release assay. Front Immunol. 12:688436. DOI: 10.3389/fimmu.2021.688436. PMID: 34093595. PMCID: PMC8173205.
14. Taus E, Hofmann C, Ibarrondo FJ, Hausner MA, Fulcher JA, Krogstad P, et al. 2022; Dominant CD8+ T cell nucleocapsid targeting in SARS-CoV-2 infection and broad spike targeting from vaccination. Front Immunol. 13:835830. DOI: 10.3389/fimmu.2022.835830. PMID: 35273611. PMCID: PMC8902813.
Article
15. Woldemeskel BA, Garliss CC, Aytenfisu TY, Johnston TS, Beck EJ, Dykema AG, et al. SARS-CoV-2-specific immune responses in boosted vaccine recipients with breakthrough infections during the Omicron variant surge. JCI Insight. 2022; 7:e159474. DOI: 10.1172/jci.insight.159474. PMID: 35389888. PMCID: PMC9220829.
Article
16. Uwamino Y, Kurafuji T, Takato K, Sakai A, Tanabe A, Noguchi M, et al. 2022; Dynamics of antibody titers and cellular immunity among Japanese healthcare workers during the 6 months after receiving two doses of BNT162b2 mRNA vaccine. Vaccine. 40:4538–43. DOI: 10.1016/j.vaccine.2022.06.016. PMID: 35718591. PMCID: PMC9212396.
Article
17. Kim JY, Lim SY, Park S, Kwon JS, Bae S, Park JY, et al. 2022; Immune responses to the ChAdOx1 nCoV-19 and BNT162b2 vaccines and to natural coronavirus disease 2019 infections over a 3-month period. J Infect Dis. 225:777–84. DOI: 10.1093/infdis/jiab579. PMID: 34850034. PMCID: PMC8767884.
Article
18. Strengert M, Becker M, Ramos GM, Dulovic A, Gruber J, Juengling J, et al. 2021; Cellular and humoral immunogenicity of a SARS-CoV-2 mRNA vaccine in patients on haemodialysis. EBioMedicine. 70:103524. DOI: 10.1016/j.ebiom.2021.103524. PMID: 34391096. PMCID: PMC8357427.
Article
19. Malipiero G, Moratto A, Infantino M, D'Agaro P, Piscianz E, Manfredi M, et al. 2021; Assessment of humoral and cellular immunity induced by the BNT162b2 SARS-CoV-2 vaccine in healthcare workers, elderly people, and immunosuppressed patients with autoimmune disease. Immunol Res. 69:576–83. DOI: 10.1007/s12026-021-09226-z. PMID: 34417958. PMCID: PMC8379062.
Article
20. Safont G, Latorre I, Villar-Hernández R, Stojanovic Z, Marín A, Pérez-Cano C, et al. 2022; Measuring T-cell responses against SARS-CoV-2 is of utility for disease and vaccination management. J Clin Med. 11:5103. DOI: 10.3390/jcm11175103. PMID: 36079033. PMCID: PMC9457376.
Article
21. Primorac D, Brlek P, Matišić V, Molnar V, Vrdoljak K, Zadro R, et al. 2022; Cellular immunity-the key to long-term protection in individuals recovered from SARS-CoV-2 and after vaccination. Vaccines (Basel). 10:442. DOI: 10.3390/vaccines10030442. PMID: 35335076. PMCID: PMC8953558.
Article
22. Hillus D, Schwarz T, Tober-Lau P, Vanshylla K, Hastor H, Thibeault C, et al. 2021; Safety, reactogenicity, and immunogenicity of homologous and heterologous prime-boost immunisation with ChAdOx1 nCoV-19 and BNT162b2: a prospective cohort study. Lancet Respir Med. 9:1255–65. DOI: 10.1016/S2213-2600(21)00357-X. PMID: 34391547.
Article
23. Parry H, Bruton R, Stephens C, Brown K, Amirthalingam G, Otter A, et al. 2021; Differential immunogenicity of BNT162b2 or ChAdOx1 vaccines after extended-interval homologous dual vaccination in older people. Immun Ageing. 18:34. DOI: 10.1186/s12979-021-00246-9. PMID: 34416887. PMCID: PMC8377354.
Article
24. Schiffner J, Backhaus I, Rimmele J, Schulz S, Möhlenkamp T, Klemens JM, et al. 2021; Long-term course of humoral and cellular immune responses in outpatients after SARS-CoV-2 infection. Front Public Health. 9:732787. DOI: 10.3389/fpubh.2021.732787. PMID: 34646805. PMCID: PMC8502872.
Article
25. Wongpakaran N, Wongpakaran T, Wedding D, Gwet KL. 2013; A comparison of Cohen's Kappa and Gwet's AC1 when calculating inter-rater reliability coefficients: a study conducted with personality disorder samples. BMC Med Res Methodol. 13:61. DOI: 10.1186/1471-2288-13-61. PMID: 23627889. PMCID: PMC3643869.
Article
26. Gwet KL. 2016; Testing the difference of correlated agreement coefficients for statistical significance. Educ Psychol Meas. 76:609–37. DOI: 10.1177/0013164415596420. PMID: 29795880. PMCID: PMC5965565.
Article
27. Altman DG. 1991. Practical statistics for medical research. 1st ed. Chapman & Hall;London: p. 404.
28. Salkind NJ. 2008. Statistics for people who hate statistics. 3rd ed. Sage Publications;CA: p. 132.
29. Schmidt F, Muecksch F, Weisblum Y, Da Silva J, Bednarski E, Cho A, et al. 2022; Plasma neutralization of the SARS-CoV-2 Omicron variant. N Engl J Med. 386:599–601. DOI: 10.1056/NEJMc2119641. PMID: 35030645. PMCID: PMC8757565.
Article
30. Tarke A, Coelho CH, Zhang Z, Dan JM, Yu ED, Methot N, et al. 2022; SARS-CoV-2 vaccination induces immunological T cell memory able to cross-recognize variants from Alpha to Omicron. Cell. 185:847–59.e11. DOI: 10.1016/j.cell.2022.01.015. PMID: 35139340. PMCID: PMC8784649.
Article
31. Bertoletti A, Le Bert N, Tan AT. 2022; SARS-CoV-2-specific T cells in the changing landscape of the COVID-19 pandemic. Immunity. 55:1764–78. DOI: 10.1016/j.immuni.2022.08.008. PMID: 36049482. PMCID: PMC9385766.
Article
32. Kim JA, Bang HI, Shin JW, Park Y, Kim S, Kim MY, et al. 2022; Immunogenicity of Third-dose BNT162b2 mRNA Vaccine Following Two Doses of ChAdOx1 in Health Care Workers: A Prospective Longitudinal Study. Ann Lab Med. 42:688–92. DOI: 10.3343/alm.2022.42.6.688. PMID: 35765878. PMCID: PMC9277035.
Article
Full Text Links
  • ALM
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr