Int J Stem Cells.  2024 Feb;17(1):1-14. 10.15283/ijsc23030.

Recent Research Trends in Stem Cells Using CRISPR/Cas-Based Genome Editing Methods

Affiliations
  • 1Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea
  • 2Department of Physiology, Korea University College of Medicine, Seoul, Korea
  • 3Department of Medicine, Korea University College of Medicine, Seoul, Korea

Abstract

The clustered regularly interspaced short palindromic repeats (CRISPR) system, a rapidly advancing genome editing technology, allows DNA alterations into the genome of organisms. Gene editing using the CRISPR system enables more precise and diverse editing, such as single nucleotide conversion, precise knock-in of target sequences or genes, chromosomal rearrangement, or gene disruption by simple cutting. Moreover, CRISPR systems comprising transcriptional activators/repressors can be used for epigenetic regulation without DNA damage. Stem cell DNA engineering based on gene editing tools has enormous potential to provide clues regarding the pathogenesis of diseases and to study the mechanisms and treatments of incurable diseases. Here, we review the latest trends in stem cell research using various CRISPR/Cas technologies and discuss their future prospects in treating various diseases.

Keyword

Clustered regularly interspaced short palindromic repeats; Genome editing; Transcriptional regulator; Stem cell

Figure

  • Fig. 1 Gene editing using clustered regularly interspaced short palindromic repeats (CRISPR) system in stem cells. CRISPR system could be used for various ex vivo or in vivo stem cell research, such as cell lineage or developmental study, generation of disease research, patient-specific pre-drug screening, and gene therapy. iPSCs: induced pluripotent stem cells, ESCs: embryonic stem cells, RNPs: ribonucleoproteins, AAV: adeno-associated virus.

  • Fig. 2 Features and brief action mechanisms of diverse clustered regularly interspaced short palindromic repeats (CRISPR) systems. CRISPR system has been applied in various ways depending on the purpose. Cas nuclease makes random mutation at the cleavage site. The base editor can convert C to T or A to G. Prime editor could insert interested sequence through reverse transcriptase, and CRISPR activation/interference (CRISPRa/i) regulates specific gene expression. sgRNA: single guide RNA, ABE: adenine base editor, PBS: primer-binding site, RTT: Rett syndrome, RT: reverse transcriptase, nCas: nickase Cas, dCas: dead Cas, NHEJ: non-homologous end joining, HDR: homology-directed repair, CBE: cytosine base editor, UGI: uracil glycosylase inhibitor.


Reference

References

1. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. 2012; A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 337:816–821. DOI: 10.1126/science.1225829. PMID: 22745249. PMCID: PMC6286148.
Article
2. Rouet P, Smih F, Jasin M. 1994; Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol Cell Biol. 14:8096–8106. DOI: 10.1128/MCB.14.12.8096. PMID: 7969147. PMCID: PMC359348.
Article
3. Gallagher DN, Haber JE. 2018; Repair of a site-specific DNA cleavage: old-school lessons for Cas9-mediated gene editing. ACS Chem Biol. 13:397–405. DOI: 10.1021/acschembio.7b00760. PMID: 29083855. PMCID: PMC5835394.
Article
4. van den Bosch M, Lohman PH, Pastink A. 2002; DNA double-strand break repair by homologous recombination. Biol Chem. 383:873–892. DOI: 10.1515/BC.2002.095. PMID: 12222678.
5. Song F, Stieger K. 2017; Optimizing the DNA donor template for homology-directed repair of double-strand breaks. Mol Ther Nucleic Acids. 7:53–60. DOI: 10.1016/j.omtn.2017.02.006. PMID: 28624224. PMCID: PMC5363683. PMID: e8da2e31beea42c686c5ffa612dadb80.
Article
6. Marraffini LA, Sontheimer EJ. 2010; CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat Rev Genet. 11:181–190. DOI: 10.1038/nrg2749. PMID: 20125085. PMCID: PMC2928866.
Article
7. Chavez A, Tuttle M, Pruitt BW, et al. 2016; Comparison of Cas9 activators in multiple species. Nat Methods. 13:563–567. DOI: 10.1038/nmeth.3871. PMID: 27214048. PMCID: PMC4927356.
Article
8. Gaudelli NM, Komor AC, Rees HA, et al. 2017; Programmable base editing of A∙T to G∙C in genomic DNA without DNA cleavage. Nature. 551:464–471. Erratum in: Nature 2018;559:E8. DOI: 10.1038/nature24644. PMID: 29160308. PMCID: PMC5726555.
Article
9. Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. 2016; Pro-grammable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. 533:420–424. DOI: 10.1038/nature17946. PMID: 27096365. PMCID: PMC4873371.
Article
10. Anzalone AV, Randolph PB, Davis JR, et al. 2019; Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. 576:149–157. DOI: 10.1038/s41586-019-1711-4. PMID: 31634902. PMCID: PMC6907074.
Article
11. Fortier LA. 2005; Stem cells: classifications, controversies, and clinical applications. Vet Surg. 34:415–423. DOI: 10.1111/j.1532-950X.2005.00063.x. PMID: 16266332.
Article
12. Umar S. 2010; Intestinal stem cells. Curr Gastroenterol Rep. 12:340–348. DOI: 10.1007/s11894-010-0130-3. PMID: 20683682. PMCID: PMC2965634.
Article
13. Dzierzak E, Bigas A. 2018; Blood development: hematopoietic stem cell dependence and independence. Cell Stem Cell. 22:639–651. DOI: 10.1016/j.stem.2018.04.015. PMID: 29727679.
Article
14. Takahashi K, Yamanaka S. 2006; Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 126:663–676. DOI: 10.1016/j.cell.2006.07.024. PMID: 16904174.
Article
15. Robinton DA, Daley GQ. 2012; The promise of induced pluripotent stem cells in research and therapy. Nature. 481:295–305. DOI: 10.1038/nature10761. PMID: 22258608. PMCID: PMC3652331.
Article
16. Ishino Y, Krupovic M, Forterre P. 2018; History of CRISPR-Cas from encounter with a mysterious repeated sequence to genome editing technology. J Bacteriol. 200:e00580–17. DOI: 10.1128/JB.00580-17. PMID: 29358495. PMCID: PMC5847661.
Article
17. Cho SW, Kim S, Kim JM, Kim JS. 2013; Targeted genome engi-neering in human cells with the Cas9 RNA-guided endo-nuclease. Nat Biotechnol. 31:230–232. DOI: 10.1038/nbt.2507. PMID: 23360966.
Article
18. Cong L, Ran FA, Cox D, et al. 2013; Multiplex genome engineering using CRISPR/Cas systems. Science. 339:819–823. DOI: 10.1126/science.1231143. PMID: 23287718. PMCID: PMC3795411.
Article
19. Mali P, Yang L, Esvelt KM, et al. 2013; RNA-guided human genome engineering via Cas9. Science. 339:823–826. DOI: 10.1126/science.1232033. PMID: 23287722. PMCID: PMC3712628.
Article
20. Guo N, Liu JB, Li W, Ma YS, Fu D. 2022; The power and the promise of CRISPR/Cas9 genome editing for clinical application with gene therapy. J Adv Res. 40:135–152. DOI: 10.1016/j.jare.2021.11.018. PMID: 36100322. PMCID: PMC9481961.
Article
21. Zetsche B, Gootenberg JS, Abudayyeh OO, et al. 2015; Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell. 163:759–771. DOI: 10.1016/j.cell.2015.09.038. PMID: 26422227. PMCID: PMC4638220.
Article
22. Fonfara I, Richter H, Bratovič M, Le Rhun A, Charpentier E. 2016; The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature. 532:517–521. DOI: 10.1038/nature17945. PMID: 27096362.
Article
23. Abudayyeh OO, Gootenberg JS, Konermann S, et al. 2016; C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science. 353:aaf5573. DOI: 10.1126/science.aaf5573. PMID: 27256883. PMCID: PMC5127784.
Article
24. Szczelkun MD, Tikhomirova MS, Sinkunas T, et al. 2014; Direct observation of R-loop formation by single RNA-guided Cas9 and Cascade effector complexes. Proc Natl Acad Sci U S A. 111:9798–9803. DOI: 10.1073/pnas.1402597111. PMID: 24912165. PMCID: PMC4103346.
Article
25. Nishimasu H, Ran FA, Hsu PD, et al. 2014; Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell. 156:935–949. DOI: 10.1016/j.cell.2014.02.001. PMID: 24529477. PMCID: PMC4139937.
Article
26. McVey M, Lee SE. 2008; MMEJ repair of double-strand breaks (director's cut): deleted sequences and alternative endings. Trends Genet. 24:529–538. DOI: 10.1016/j.tig.2008.08.007. PMID: 18809224. PMCID: PMC5303623.
Article
27. Farboud B, Jarvis E, Roth TL, et al. 2018; Enhanced genome editing with Cas9 ribonucleoprotein in diverse cells and orga-nisms. J Vis Exp. (135):57350. DOI: 10.3791/57350. PMID: 29889198. PMCID: PMC6101420.
Article
28. Kim S, Kim D, Cho SW, Kim J, Kim JS. 2014; Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res. 24:1012–1019. DOI: 10.1101/gr.171322.113. PMID: 24696461. PMCID: PMC4032847.
Article
29. Martinez-Lage M, Puig-Serra P, Menendez P, Torres-Ruiz R, Rodriguez-Perales S. 2018; CRISPR/Cas9 for cancer therapy: hopes and challenges. Biomedicines. 6:105. DOI: 10.3390/biomedicines6040105. PMID: 30424477. PMCID: PMC6315587. PMID: 1072d8d705d44a0493545632fce87bd7.
Article
30. Chapman JE, Gillum D, Kiani S. 2017; Approaches to reduce CRISPR off-target effects for safer genome editing. Appl Biosaf. 22:7–13. DOI: 10.1177/1535676017694148.
Article
31. Shen CC, Hsu MN, Chang CW, et al. 2019; Synthetic switch to minimize CRISPR off-target effects by self-restricting Cas9 transcription and translation. Nucleic Acids Res. 47:e13. DOI: 10.1093/nar/gky1165. PMID: 30462300. PMCID: PMC6379646.
Article
32. Marino ND, Pinilla-Redondo R, Csörgő B, Bondy-Denomy J. 2020; Anti-CRISPR protein applications: natural brakes for CRISPR-Cas technologies. Nat Methods. 17:471–479. DOI: 10.1038/s41592-020-0771-6. PMID: 32203383. PMCID: PMC8510557.
Article
33. Pawluk A, Davidson AR, Maxwell KL. 2018; Anti-CRISPR: discovery, mechanism and function. Nat Rev Microbiol. 16:12–17. DOI: 10.1038/nrmicro.2017.120. PMID: 29062071.
Article
34. Zhu Y, Gao A, Zhan Q, et al. 2019; Diverse mechanisms of CRISPR-Cas9 inhibition by type IIC anti-CRISPR proteins. Mol Cell. 74:296–309.e7. DOI: 10.1016/j.molcel.2019.01.038. PMID: 30850331. PMCID: PMC6750902.
Article
35. Harrington LB, Doxzen KW, Ma E, et al. 2017; A broad-spectrum inhibitor of CRISPR-Cas9. Cell. 170:1224–1233.e15. DOI: 10.1016/j.cell.2017.07.037. PMID: 28844692. PMCID: PMC5875921.
Article
36. Bondy-Denomy J, Garcia B, Strum S, et al. 2015; Multiple mechanisms for CRISPR-Cas inhibition by anti-CRISPR proteins. Nature. 526:136–139. DOI: 10.1038/nature15254. PMID: 26416740. PMCID: PMC4935067.
37. Brunet E, Jasin M. 2018; Induction of chromosomal translocations with CRISPR-Cas9 and other nucleases: understanding the repair mechanisms that give rise to translocations. Adv Exp Med Biol. 1044:15–25. DOI: 10.1007/978-981-13-0593-1_2. PMID: 29956288. PMCID: PMC6333474.
Article
38. Rose JC, Popp NA, Richardson CD, et al. 2020; Suppression of unwanted CRISPR-Cas9 editing by co-administration of catalytically inactivating truncated guide RNAs. Nat Commun. 11:2697. DOI: 10.1038/s41467-020-16542-9. PMID: 32483117. PMCID: PMC7264211. PMID: 32953ad84ae148f1a96180fcc11e3524.
39. Amendola M, Brusson M, Miccio A. 2022; CRISPRthripsis: the risk of CRISPR/Cas9-induced chromothripsis in gene therapy. Stem Cells Transl Med. 11:1003–1009. DOI: 10.1093/stcltm/szac064. PMID: 36048170. PMCID: PMC9585945.
Article
40. Wen W, Zhang XB. 2022; CRISPR-Cas9 gene editing induced complex on-target outcomes in human cells. Exp Hematol. 110:13–19. DOI: 10.1016/j.exphem.2022.03.002. PMID: 35304271.
Article
41. Lee J, Lim K, Kim A, et al. 2023; Prime editing with genuine Cas9 nickases minimizes unwanted indels. Nat Commun. 14:1786. DOI: 10.1038/s41467-023-37507-8. PMID: 36997524. PMCID: PMC10063541. PMID: d4e6a4c2bb8349c89d41ddb7631ab4af.
Article
42. Thuronyi BW, Koblan LW, Levy JM, et al. 2019; Continuous evolution of base editors with expanded target compatibility and improved activity. Nat Biotechnol. 37:1070–1079. Erratum in: Nat Biotechnol 2019;37:1091. DOI: 10.1038/s41587-019-0193-0. PMCID: PMC6728210.
Article
43. Kim YB, Komor AC, Levy JM, Packer MS, Zhao KT, Liu DR. 2017; Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Nat Biotechnol. 35:371–376. DOI: 10.1038/nbt.3803. PMID: 28191901. PMCID: PMC5388574.
44. Komor AC, Zhao KT, Packer MS, et al. 2017; Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:a base editors with higher efficiency and product purity. Sci Adv. 3:eaao4774. DOI: 10.1126/sciadv.aao4774. PMID: 28875174. PMCID: PMC5576876.
Article
45. Landrum MJ, Lee JM, Riley GR, et al. 2014; ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res. 42:D980–D985. DOI: 10.1093/nar/gkt1113. PMID: 24234437. PMCID: PMC3965032.
Article
46. Landrum MJ, Lee JM, Benson M, et al. 2016; ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res. 44:D862–D868. DOI: 10.1093/nar/gkv1222. PMID: 26582918. PMCID: PMC4702865.
Article
47. Richter MF, Zhao KT, Eton E, et al. 2020; Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity. Nat Biotechnol. 38:883–891. Erratum in: Nat Biotechnol 2020;38:901. DOI: 10.1038/s41587-020-0453-z. PMID: 32433547. PMCID: PMC7357821.
Article
48. Rothgangl T, Dennis MK, Lin PJC, et al. 2021; In vivo adenine base editing of PCSK9 in macaques reduces LDL cholesterol levels. Nat Biotechnol. 39:949–957. DOI: 10.1038/s41587-021-00933-4. PMID: 34012094. PMCID: PMC8352781.
49. Tu T, Song Z, Liu X, et al. 2022; A precise and efficient adenine base editor. Mol Ther. 30:2933–2941. DOI: 10.1016/j.ymthe.2022.07.010. PMID: 35821638. PMCID: PMC9481987.
50. Chen L, Zhang S, Xue N, et al. 2023; Engineering a precise adenine base editor with minimal bystander editing. Nat Chem Biol. 19:101–110. DOI: 10.1038/s41589-022-01163-8. PMID: 36229683.
51. Grünewald J, Zhou R, Lareau CA, et al. 2020; A dual-deaminase CRISPR base editor enables concurrent adenine and cytosine editing. Nat Biotechnol. 38:861–864. DOI: 10.1038/s41587-020-0535-y. PMID: 32483364. PMCID: PMC7723518.
52. Sakata RC, Ishiguro S, Mori H, et al. 2020; Base editors for simultaneous introduction of C-to-T and A-to-G mutations. Nat Biotechnol. 38:865–869. Erratum in: Nat Biotechnol 2020;38:901. DOI: 10.1038/s41587-020-0509-0.
53. Zhang X, Zhu B, Chen L, et al. 2020; Dual base editor catalyzes both cytosine and adenine base conversions in human cells. Nat Biotechnol. 38:856–860. DOI: 10.1038/s41587-020-0527-y. PMID: 32483363.
Article
54. Chen L, Park JE, Paa P, et al. 2021; Programmable C:G to G:C genome editing with CRISPR-Cas9-directed base excision repair proteins. Nat Commun. 12:1384. DOI: 10.1038/s41467-021-21559-9. PMID: 33654077. PMCID: PMC7925527. PMID: 179d414f933d4b028a782187beb2408e.
55. Sun N, Zhao D, Li S, Zhang Z, Bi C, Zhang X. 2022; Recon-structed glycosylase base editors GBE2.0 with enhanced C-to-G base editing efficiency and purity. Mol Ther. 30:2452–2463. DOI: 10.1016/j.ymthe.2022.03.023. PMID: 35381364. PMCID: PMC9263226.
56. Nishimasu H, Shi X, Ishiguro S, et al. 2018; Engineered CRISPR-Cas9 nuclease with expanded targeting space. Science. 361:1259–1262. DOI: 10.1126/science.aas9129. PMID: 30166441. PMCID: PMC6368452.
57. Friedland AE, Baral R, Singhal P, et al. 2015; Characterization of Staphylococcus aureus Cas9: a smaller Cas9 for all-in-one adeno-associated virus delivery and paired nickase applications. Genome Biol. 16:257. DOI: 10.1186/s13059-015-0817-8. PMID: 26596280. PMCID: PMC4657203.
58. Rees HA, Liu DR. 2018; Base editing: precision chemistry on the genome and transcriptome of living cells. Nat Rev Genet. 19:770–788. Erratum in: Nat Rev Genet 2018;19:801. DOI: 10.1038/s41576-018-0059-1. PMID: 30323312. PMCID: PMC6535181.
Article
59. Park SJ, Jeong TY, Shin SK, et al. 2021; Targeted mutagenesis in mouse cells and embryos using an enhanced prime editor. Genome Biol. 22:170. DOI: 10.1186/s13059-021-02389-w. PMID: 34082781. PMCID: PMC8173820. PMID: 090e19d9eb3b4d668ab587bfea39465f.
60. Kweon J, Hwang HY, Ryu H, Jang AH, Kim D, Kim Y. 2023; Targeted genomic translocations and inversions generated using a paired prime editing strategy. Mol Ther. 31:249–259. DOI: 10.1016/j.ymthe.2022.09.008. PMID: 36114670. PMCID: PMC9840113.
61. Chen PJ, Hussmann JA, Yan J, et al. 2021; Enhanced prime editing systems by manipulating cellular determinants of editing outcomes. Cell. 184:5635–5652.e29. DOI: 10.1016/j.cell.2021.09.018. PMID: 34653350. PMCID: PMC8584034.
62. Nelson JW, Randolph PB, Shen SP, et al. 2022; Engineered pegRNAs improve prime editing efficiency. Nat Biotechnol. 40:402–410. Erratum in: Nat Biotechnol 2022;40:432. DOI: 10.1038/s41587-021-01039-7. PMCID: PMC8930418.
63. Gilbert LA, Larson MH, Morsut L, et al. 2013; CRISPR-mediated modular RNA-guided regulation of transcription in euka-ryotes. Cell. 154:442–451. DOI: 10.1016/j.cell.2013.06.044. PMID: 23849981. PMCID: PMC3770145.
64. Qi LS, Larson MH, Gilbert LA, et al. 2013; Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell. 152:1173–1183. Erratum in: Cell 2021;184:844. DOI: 10.1016/j.cell.2013.02.022. PMID: 23452860. PMCID: PMC3664290.
Article
65. Gilbert LA, Horlbeck MA, Adamson B, et al. 2014; Genome-scale CRISPR-mediated control of gene repression and activa-tion. Cell. 159:647–661. DOI: 10.1016/j.cell.2014.09.029. PMID: 25307932. PMCID: PMC4253859.
66. Konermann S, Brigham MD, Trevino A, et al. 2013; Optical control of mammalian endogenous transcription and epigenetic states. Nature. 500:472–476. DOI: 10.1038/nature12466. PMID: 23877069. PMCID: PMC3856241.
Article
67. Konermann S, Brigham MD, Trevino AE, et al. 2015; Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature. 517:583–588. DOI: 10.1038/nature14136. PMID: 25494202. PMCID: PMC4420636.
68. Chavez A, Scheiman J, Vora S, et al. 2015; Highly efficient Cas9-mediated transcriptional programming. Nat Methods. 12:326–328. DOI: 10.1038/nmeth.3312. PMID: 25730490. PMCID: PMC4393883.
69. Tanenbaum ME, Gilbert LA, Qi LS, Weissman JS, Vale RD. 2014; A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell. 159:635–646. DOI: 10.1016/j.cell.2014.09.039. PMID: 25307933. PMCID: PMC4252608.
Article
70. Wei R, Yuan F, Wu Y, et al. 2018; Construction of a GLI3 compound heterozygous knockout human embryonic stem cell line WAe001-A-20 by CRISPR/Cas9 editing. Stem Cell Res. 32:139–144. DOI: 10.1016/j.scr.2018.09.010. PMID: 30278376.
Article
71. Wang Z, Cui Y, Shan Y, et al. 2020; Generation of a MCPH1 knockout human embryonic stem cell line by CRISPR/Cas9 technology. Stem Cell Res. 49:102105. DOI: 10.1016/j.scr.2020.102105. PMID: 33370873.
Article
72. Überbacher C, Obergasteiger J, Volta M, et al. 2019; Application of CRISPR/Cas9 editing and digital droplet PCR in human iPSCs to generate novel knock-in reporter lines to visualize dopaminergic neurons. Stem Cell Res. 41:101656. DOI: 10.1016/j.scr.2019.101656. PMID: 31733438. PMCID: PMC7322529.
Article
73. Wu J, Hunt SD, Xue H, Liu Y, Darabi R. 2016; Generation and validation of PAX7 reporter lines from human iPS cells using CRISPR/Cas9 technology. Stem Cell Res. 16:220–228. DOI: 10.1016/j.scr.2016.01.003. PMID: 26826926. PMID: 7c6c805df9174335879ee8f80e3bdb95.
74. Lee J, Bayarsaikhan D, Bayarsaikhan G, Kim JS, Schwarz-bach E, Lee B. 2020; Recent advances in genome editing of stem cells for drug discovery and therapeutic application. Phar-macol Ther. 209:107501. DOI: 10.1016/j.pharmthera.2020.107501. PMID: 32061705.
Article
75. Wu X, Jiang J, Gu Z, Zhang J, Chen Y, Liu X. 2020; Mesenchy-mal stromal cell therapies: immunomodulatory properties and clinical progress. Stem Cell Res Ther. 11:345. DOI: 10.1186/s13287-020-01855-9. PMID: 32771052. PMCID: PMC7414268. PMID: 500c255ba4ea4e5197bfeb6d27b44dde.
76. Zhu Z, Verma N, González F, Shi ZD, Huangfu D. 2015; A CRISPR/Cas-mediated selection-free knockin strategy in human embryonic stem cells. Stem Cell Reports. 4:1103–1111. DOI: 10.1016/j.stemcr.2015.04.016. PMID: 26028531. PMCID: PMC4471821. PMID: 7eefbed17c1f4feaa9f806e1d4c754bd.
77. Zhou J, Wang C, Zhang K, et al. 2016; Generation of human embryonic stem cell line expressing zsGreen in cholinergic neurons using CRISPR/Cas9 system. Neurochem Res. 41:2065–2074. DOI: 10.1007/s11064-016-1918-9. PMID: 27113041.
Article
78. Habib O, Habib G, Hwang GH, Bae S. 2022; Comprehensive analysis of prime editing outcomes in human embryonic stem cells. Nucleic Acids Res. 50:1187–1197. DOI: 10.1093/nar/gkab1295. PMID: 35018468. PMCID: PMC8789035.
Article
79. Kearns NA, Genga RM, Enuameh MS, Garber M, Wolfe SA, Maehr R. 2014; Cas9 effector-mediated regulation of transcri-ption and differentiation in human pluripotent stem cells. Development. 141:219–223. DOI: 10.1242/dev.103341. PMID: 24346702. PMCID: PMC3865759.
80. Park CY, Kim DH, Son JS, et al. 2015; Functional correction of large factor VIII gene chromosomal inversions in hemophilia A patient-derived iPSCs using CRISPR-Cas9. Cell Stem Cell. 17:213–220. DOI: 10.1016/j.stem.2015.07.001. PMID: 26212079.
Article
81. Miki T, Vazquez L, Yanuaria L, et al. 2019; Induced pluripotent stem cell derivation and ex vivo gene correction using a mucopolysaccharidosis type 1 disease mouse model. Stem Cells Int. 2019:6978303. DOI: 10.1155/2019/6978303. PMID: 31065277. PMCID: PMC6466856. PMID: 64afa4737b334b2da07ac998db71302a.
Article
82. Hagberg B, Aicardi J, Dias K, Ramos O. 1983; A progressive syndrome of autism, dementia, ataxia, and loss of purposeful hand use in girls: Rett's syndrome: report of 35 cases. Ann Neurol. 14:471–479. DOI: 10.1002/ana.410140412. PMID: 6638958.
83. Le TTH, Tran NT, Dao TML, et al. 2019; Efficient and precise CRISPR/Cas9-mediated MECP2 modifications in human- induced pluripotent stem cells. Front Genet. 10:625. DOI: 10.3389/fgene.2019.00625. PMID: 31333716. PMCID: PMC6614930. PMID: 24115b9b9c884f05a4f1cbce20d86fe4.
84. Lin YT, Seo J, Gao F, et al. 2018; APOE4 causes widespread molecular and cellular alterations associated with Alzheimer's disease phenotypes in human iPSC-derived brain cell types. Neuron. 98:1141–1154.e7. Erratum in: Neuron 2018;98: 1294. DOI: 10.1016/j.neuron.2018.05.008. PMID: 29861287. PMCID: PMC6023751.
Article
85. Yang Y, Zhang X, Yi L, et al. 2016; Naïve induced pluripotent stem cells generated from β-thalassemia fibroblasts allow efficient gene correction with CRISPR/Cas9. Stem Cells Transl Med. 5:8–19. Erratum in: Stem Cells Transl Med 2016;5:267. DOI: 10.5966/sctm.2015-0157. PMID: 26676643. PMCID: PMC4704878.
Article
86. Hoppe B, Beck BB, Milliner DS. 2009; The primary hyperoxalurias. Kidney Int. 75:1264–1271. DOI: 10.1038/ki.2009.32. PMID: 19225556. PMCID: PMC4577278.
Article
87. Estève J, Blouin JM, Lalanne M, et al. 2019; Targeted gene therapy in human-induced pluripotent stem cells from a patient with primary hyperoxaluria type 1 using CRISPR/Cas9 technology. Biochem Biophys Res Commun. 517:677–683. DOI: 10.1016/j.bbrc.2019.07.109. PMID: 31402115.
Article
88. Mykkänen K, Savontaus ML, Juvonen V, et al. 2004; Detection of the founder effect in Finnish CADASIL families. Eur J Hum Genet. 12:813–819. DOI: 10.1038/sj.ejhg.5201221. PMID: 15378071.
Article
89. Vuorio AF, Aalto-Setälä K, Koivisto UM, et al. 2001; Familial hypercholesterolaemia in Finland: common, rare and mild mutations of the LDL receptor and their clinical consequences. Finnish FH-group. Ann Med. 33:410–421. DOI: 10.3109/07853890108995954. PMID: 11585102.
Article
90. Jalil S, Keskinen T, Maldonado R, et al. 2021; Simultaneous high-efficiency base editing and reprogramming of patient fibroblasts. Stem Cell Reports. 16:3064–3075. DOI: 10.1016/j.stemcr.2021.10.017. PMID: 34822772. PMCID: PMC8693657.
Article
91. Chang KH, Huang CY, Ou-Yang CH, et al. 2021; In vitro genome editing rescues parkinsonism phenotypes in induced pluripotent stem cells-derived dopaminergic neurons carrying LRRK2 p.G2019S mutation. Stem Cell Res Ther. 12:508. DOI: 10.1186/s13287-021-02585-2. PMID: 34551822. PMCID: PMC8456557. PMID: bc881b164425452fba2c024c95eb8485.
Article
92. Chemello F, Chai AC, Li H, et al. 2021; Precise correction of Duchenne muscular dystrophy exon deletion mutations by base and prime editing. Sci Adv. 7:eabg4910. DOI: 10.1126/sciadv.abg4910. PMID: 33931459. PMCID: PMC8087404.
Article
93. Zhou M, Tang S, Duan N, et al. 2022; Targeted-deletion of a tiny sequence via prime editing to restore SMN expression. Int J Mol Sci. 23:7941. DOI: 10.3390/ijms23147941. PMID: 35887289. PMCID: PMC9317564. PMID: ec5edefa977b492892cca212b420c478.
Article
94. Luo Y, Xu X, An X, Sun X, Wang S, Zhu D. 2016; Targeted inhibition of the miR-199a/214 cluster by CRISPR interference augments the tumor tropism of human induced pluripotent stem cell-derived neural stem cells under hypoxic condition. Stem Cells Int. 2016:3598542. DOI: 10.1155/2016/3598542. PMID: 27965712. PMCID: PMC5124688. PMID: 8422d3090a904c179f6c73c3d148551c.
Article
95. Bozdağ SC, Yüksel MK, Demirer T. 2018; Adult stem cells and medicine. Adv Exp Med Biol. 1079:17–36. DOI: 10.1007/5584_2018_184. PMID: 29556955.
96. Brunetti L, Gundry MC, Kitano A, Nakada D, Goodell MA. 2018; Highly efficient gene disruption of murine and human hematopoietic progenitor cells by CRISPR/Cas9. J Vis Exp. (134):57278. DOI: 10.3791/57278. PMID: 29708546. PMCID: PMC5933422.
Article
97. Gundry MC, Brunetti L, Lin A, et al. 2016; Highly efficient genome editing of murine and human hematopoietic progenitor cells by CRISPR/Cas9. Cell Rep. 17:1453–1461. DOI: 10.1016/j.celrep.2016.09.092. PMID: 27783956. PMCID: PMC5087995.
Article
98. Moore RD, Chaisson RE. 1999; Natural history of HIV infection in the era of combination antiretroviral therapy. AIDS. 13:1933–1942. DOI: 10.1097/00002030-199910010-00017. PMID: 10513653.
Article
99. Xu L, Yang H, Gao Y, et al. 2017; CRISPR/Cas9-mediated CCR5 ablation in human hematopoietic stem/progenitor cells confers HIV-1 resistance in vivo. Mol Ther. 25:1782–1789. DOI: 10.1016/j.ymthe.2017.04.027. PMID: 28527722. PMCID: PMC5542791.
Article
100. Xiao Q, Chen S, Wang Q, et al. 2019; CCR5 editing by Staphylo-coccus aureus Cas9 in human primary CD4+ T cells and hematopoietic stem/progenitor cells promotes HIV-1 resistance and CD4+ T cell enrichment in humanized mice. Retrovirology. 16:15. Erratum in: Retrovirology 2019;16:20. DOI: 10.1186/s12977-019-0477-y. PMID: 31186067. PMCID: PMC6560749. PMID: daff0aaa003c4d039f406a0559f5988d.
101. Moss AJ. 2003; Long QT syndrome. JAMA. 289:2041–2044. DOI: 10.1001/jama.289.16.2041. PMID: 12709446.
Article
102. Qi T, Wu F, Xie Y, et al. 2020; Base editing mediated generation of point mutations into human pluripotent stem cells for modeling disease. Front Cell Dev Biol. 8:590581. DOI: 10.3389/fcell.2020.590581. PMID: 33102492. PMCID: PMC7546412. PMID: fbb3a9afcbf246eda32aa4c8d22a846b.
Article
103. Wilde AAM, Amin AS. 2018; Clinical spectrum of SCN5A mutations: long QT syndrome, Brugada syndrome, and cardio-myopathy. JACC Clin Electrophysiol. 4:569–579. DOI: 10.1016/j.jacep.2018.03.006. PMID: 29798782.
104. Dever DP, Bak RO, Reinisch A, et al. 2016; CRISPR/Cas9 β-globin gene targeting in human haematopoietic stem cells. Nature. 539:384–389. DOI: 10.1038/nature20134. PMID: 27820943. PMCID: PMC5898607.
Article
105. Zeng J, Wu Y, Ren C, et al. 2020; Therapeutic base editing of human hematopoietic stem cells. Nat Med. 26:535–541. DOI: 10.1038/s41591-020-0790-y. PMID: 32284612. PMCID: PMC7869435.
Article
106. Sangkitporn S, Rerkamnuaychoke B, Sangkitporn S, Mitrakul C, Sutivigit Y. 2002; Hb G Makassar (beta 6:Glu-Ala) in a Thai family. J Med Assoc Thai. 85:577–582.
107. Chu SH, Packer M, Rees H, et al. 2021; Rationally designed base editors for precise editing of the sickle cell disease mutation. CRISPR J. 4:169–177. DOI: 10.1089/crispr.2020.0144. PMID: 33876959.
Article
108. Newby GA, Yen JS, Woodard KJ, et al. 2021; Base editing of haematopoietic stem cells rescues sickle cell disease in mice. Nature. 595:295–302. DOI: 10.1038/s41586-021-03609-w. PMID: 34079130. PMCID: PMC8266759.
109. Miller SM, Wang T, Randolph PB, et al. 2020; Continuous evolution of SpCas9 variants compatible with non-G PAMs. Nat Biotechnol. 38:471–481. DOI: 10.1038/s41587-020-0412-8. PMID: 32042170. PMCID: PMC7145744.
Article
110. Escobar H, Krause A, Keiper S, et al. 2021; Base editing repairs an SGCA mutation in human primary muscle stem cells. JCI Insight. 6:e145994. DOI: 10.1172/jci.insight.145994. PMID: 33848270. PMCID: PMC8262330.
Article
111. Furuhata Y, Nihongaki Y, Sato M, Yoshimoto K. 2017; Control of adipogenic differentiation in mesenchymal stem cells via endogenous gene activation using CRISPR-Cas9. ACS Synth Biol. 6:2191–2197. DOI: 10.1021/acssynbio.7b00246. PMID: 29077398.
Article
112. Schene IF, Joore IP, Oka R, et al. 2020; Prime editing for functional repair in patient-derived disease models. Nat Com-mun. 11:5352. DOI: 10.1038/s41467-020-19136-7. PMID: 33097693. PMCID: PMC7584657. PMID: 0ba02ae845834a578eb870a005592a64.
Article
113. Schwank G, Koo BK, Sasselli V, et al. 2013; Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell. 13:653–658. DOI: 10.1016/j.stem.2013.11.002. PMID: 24315439.
Article
114. Geurts MH, de Poel E, Pleguezuelos-Manzano C, et al. 2021; Evalu-ating CRISPR-based prime editing for cancer modeling and CFTR repair in organoids. Life Sci Alliance. 4:e202000940. DOI: 10.26508/lsa.202000940. PMID: 34373320. PMCID: PMC8356249.
Article
115. Kosicki M, Tomberg K, Bradley A. 2018; Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements. Nat Biotechnol. 36:765–771. DOI: 10.1038/nbt.4192. PMID: 30010673. PMCID: PMC6390938.
Article
116. Harrington LB, Burstein D, Chen JS, et al. 2018; Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science. 362:839–842. DOI: 10.1126/science.aav4294. PMID: 30337455. PMCID: PMC6659742.
Article
Full Text Links
  • IJSC
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr