1. Goto M, Al-Hasan MN. 2013; Overall burden of bloodstream infection and nosocomial bloodstream infection in North America and Europe. Clin Microbiol Infect. 19:501–9. DOI:
10.1111/1469-0691.12195. PMID:
23473333.
Article
3. Seymour CW, Liu VX, Iwashyna TJ, Brunkhorst FM, Rea TD, Scherag A, et al. 2016; Assessment of clinical criteria for sepsis: for the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 315:762–74. DOI:
10.1001/jama.2016.0288. PMID:
26903335. PMCID:
PMC5433435.
5. Ferrer R, Artigas A, Suarez D, Palencia E, Levy MM, Arenzana A, et al. 2009; Effectiveness of treatments for severe sepsis: a prospective, multicenter, observational study. Am J Respir Crit Care Med. 180:861–6. DOI:
10.1164/rccm.200812-1912OC. PMID:
19696442.
6. Ferrer R, Martin-Loeches I, Phillips G, Osborn TM, Townsend S, Dellinger RP, et al. 2014; Empiric antibiotic treatment reduces mortality in severe sepsis and septic shock from the first hour: results from a guideline-based performance improvement program. Crit Care Med. 42:1749–55. DOI:
10.1097/CCM.0000000000000330. PMID:
24717459.
7. Puskarich MA, Trzeciak S, Shapiro NI, Arnold RC, Horton JM, Studnek JR, et al. 2011; Association between timing of antibiotic administration and mortality from septic shock in patients treated with a quantitative resuscitation protocol. Crit Care Med. 39:2066–71. DOI:
10.1097/CCM.0b013e31821e87ab. PMID:
21572327. PMCID:
PMC3158284.
Article
8. Vilella AL, Seifert CF. 2014; Timing and appropriateness of initial antibiotic therapy in newly presenting septic patients. Am J Emerg Med. 32:7–13. DOI:
10.1016/j.ajem.2013.09.008. PMID:
24139996.
Article
9. Sterling SA, Miller WR, Pryor J, Puskarich MA, Jones AE. 2015; The impact of timing of antibiotics on outcomes in severe sepsis and septic shock: a systematic review and meta-analysis. Crit Care Med. 43:1907–15. DOI:
10.1097/CCM.0000000000001142. PMID:
26121073. PMCID:
PMC4597314.
11. Grundmann H, Glasner C, Albiger B, Aanensen DM, Tomlinson CT, Andrasević AT, et al. 2017; Occurrence of carbapenemase-producing
Klebsiella pneumoniae and
Escherichia coli in the European survey of carbapenemase-producing Enterobacteriaceae (EuSCAPE): a prospective, multinational study. Lancet Infect Dis. 17:153–63. DOI:
10.1016/S1473-3099(16)30257-2. PMID:
27866944.
12. Denis B, Lafaurie M, Donay JL, Fontaine JP, Oksenhendler E, Raffoux E, et al. 2015; Prevalence, risk factors, and impact on clinical outcome of extended-spectrum beta-lactamase-producing
Escherichia coli bacteraemia: a five-year study. Int J Infect Dis. 39:1–6. DOI:
10.1016/j.ijid.2015.07.010. PMID:
26189774.
Article
14. Wilson ML, Weinstein MP, Reller LB. 2015. Laboratory detection of bacteremia and fungemia. Manual of clinical microbiology. p. 15–28.
Article
15. Yu SH, Lee JH, Kim MC, Choi SH, Chung JW, Lee MK. 2021; Ten-year prevalence trends of phenotypically identified community-associated methicillin-resistant
Staphylococcus aureus strains in clinical specimens. Ann Lab Med. 41:386–93. DOI:
10.3343/alm.2021.41.4.386. PMID:
33536357. PMCID:
PMC7884191.
Article
16. Turnidge JD. Jorgensen JH, Carroll KC, editors. 2015. Susceptibility test methods: general considerations. Manual of clinical microbiology. Wiley;Hoboken: p. 1246–52.
Article
17. Jorgensen JH, Turnidge JD. Jorgensen JH, Carroll KC, editors. 2015. Susceptibility test methods: dilution and disk diffusion methods. Manual of clinical microbiology. Wiley;Hoboken: p. 1253–73.
Article
18. Karlowsky JA, Richter SS. Jorgensen JH, Carroll KC, editors. 2015. Antimicrobial susceptibility testing systems. Manual of clinical microbiology. Wiley;Hoboken: p. 1274–85.
Article
19. Bauer A. 1966; Antibiotic susceptibility testing by a standardized single disc method. Am J Clin Pathol. 45:149–58. DOI:
10.1093/ajcp/45.4_ts.493.
20. CLSI. 2022. Performance standards for antimicrobial susceptibility testing. 32nd ed. CLSI M100. Clinical and Laboratory Standards Institute;Wayne, PA:
21. European Committee on Antimicrobial Susceptibility Testing. 2022. Breakpoint tables for interpretation of MICs and zone diameters. version 12.0. European Committee on Antimicrobial Susceptibility Testing;Växjö, Sweden:
22. Kahlmeter G, Giske CG, Kirn TJ, Sharp SE. 2019; Point-counterpoint: differences between the European committee on antimicrobial susceptibility testing and Clinical and Laboratory Standards Institute recommendations for reporting antimicrobial susceptibility results. J Clin Microbiol. 57:e01129–19. DOI:
10.1128/JCM.01129-19. PMID:
31315957. PMCID:
PMC6711922.
Article
23. European Committee on Antimicrobial Susceptibility Testing. 2022. Methodology-EUCAST rapid antimicrobial susceptibility testing (RAST) directly from positive blood culture bottles version 3.0. European Committee on Antimicrobial Susceptibility Testing;Växjö, Sweden:
24. European Committee on Antimicrobial Susceptibility Testing. 2022. Zone diameter breakpoint tables for rapid antimicrobial susceptibility testing (RAST) directly from blood culture bottles version 5.1. European Committee on Antimicrobial Susceptibility Testing;Växjö, Sweden:
25. Kim D, Yoon EJ, Hong JS, Choi MH, Kim HS, Kim YR, et al. Major bloodstream infection-causing bacterial pathogens and their antimicrobial resistance in South Korea, 2017-2019: phase I report from Kor-GLASS. Front Microbiol. 2022; 12:799084. DOI:
10.3389/fmicb.2021.799084. PMID:
35069503. PMCID:
PMC8770956.
Article
26. CLSI. 2019. Performance standards for antimicrobial susceptibility testing. 29th ed. CLSI M100. Clinical and Laboratory Standards Institute;Wayne, PA:
27. European Committee on Antimicrobial Susceptibility Testing. 2022. Routine and extended internal quality control for MIC determination and disk diffusion as recommended by EUCAST version 12.0. European Committee on Antimicrobial Susceptibility Testing;Växjö, Sweden:
28. U.S. Food and Drug Administration. 2009. Class II special controls guidance document: antimicrobial susceptibility test (AST) systems. Food and Drug Administration;Rockville, MD: