3. Schneider IJ, Schmidt TP, dos Santos AM, Correa VP, Garcia LP, de Oliveira C, et al. Overall survival analyses of female malignancies in Southern Brazil during 2008–2017: a closer look at breast, cervical and ovarian cancer. Dialogues Health. 2022; 1:100010.
https://doi.org/10.1016/j.dialog.2022.100010.
Article
4. Vaiyapuri T, Alaskar H, Syed L, Aljohani E, Alkhayyat A, Shankar K, et al. Modified metaheuristics with stacked sparse denoising autoencoder model for cervical cancer classification. Comput Electr Eng. 2022; 103:108292.
https://doi.org/10.1016/j.compeleceng.2022.108292.
Article
5. Riano I, Contreras-Chavez P, Pabon CM, Meza K, Kiel L, Bejarano S, et al. An overview of cervical cancer prevention and control in Latin America and the Caribbean countries. Hematol Oncol Clin North Am. 2024; 38(1):13–33.
https://doi.org/10.1016/j.hoc.2023.05.012.
Article
8. Khan A, Hussain S, Iyer JK, Kaul A, Bonnewitz M, Kaul R. Human papillomavirus-mediated expression of complement regulatory proteins in human cervical cancer cells. Eur J Obstet Gynecol Reprod Biol. 2023; 288:222–8.
https://doi.org/10.1016/j.ejogrb.2023.07.014.
Article
9. Alabi RO, Makitie AA, Pirinen M, Elmusrati M, Leivo I, Almangush A. Comparison of nomogram with machine learning techniques for prediction of overall survival in patients with tongue cancer. Int J Med Inform. 2021; 145:104313.
https://doi.org/10.1016/j.ijmedinf.2020.104313.
Article
14. Matsuo K, Purushotham S, Jiang B, Mandelbaum RS, Takiuchi T, Liu Y, et al. Survival outcome prediction in cervical cancer: Cox models vs deep-learning model. Am J Obstet Gynecol. 2019; 220(4):381.
https://doi.org/10.1016/j.ajog.2018.12.030.
Article
17. Guo C, Wang J, Wang Y, Qu X, Shi Z, Meng Y, et al. Novel artificial intelligence machine learning approaches to precisely predict survival and site-specific recurrence in cervical cancer: a multi-institutional study. Transl Oncol. 2021; 14(5):101032.
https://doi.org/10.1016/j.tranon.2021.101032.
Article
18. Lynch CM, Abdollahi B, Fuqua JD, de Carlo AR, Bartholomai JA, Balgemann RN, et al. Prediction of lung cancer patient survival via supervised machine learning classification techniques. Int J Med Inform. 2017; 108:1–8.
https://doi.org/10.1016/j.ijmedinf.2017.09.013.
Article
21. Tapak L, Shirmohammadi-Khorram N, Amini P, Alafchi B, Hamidi O, Poorolajal J. Prediction of survival and metastasis in breast cancer patients using machine learning classifiers. Clin Epidemiol Glob Health. 2019; 7(3):293–9.
https://doi.org/10.1016/j.cegh.2018.10.003.
Article
22. Tharavichitkul E, Jia-Mahasap B, Muangwong P, Chakrabandhu S, Klunklin P, Onchan W, et al. Survival outcome of cervical cancer patients treated by image-guided brachytherapy: a ‘real world’ single center experience in Thailand from 2008 to 2018. J Radiat Res. 2022; 63(4):657–65.
https://doi.org/10.1093/jrr/rrac025.
Article
24. Gill BS, Lin JF, Krivak TC, Sukumvanich P, Laskey RA, Ross MS, et al. National Cancer Data Base analysis of radiation therapy consolidation modality for cervical cancer: the impact of new technological advancements. Int J Radiat Oncol Biol Phys. 2014; 90(5):1083–90.
https://doi.org/10.1016/j.ijrobp.2014.07.017.
Article