1. Meng L, Pammi M, Saronwala A, Magoulas P, Ghazi AR, Vetrini F, et al. 2017; Use of exome sequencing for infants in intensive care units: ascertainment of severe single-gene disorders and effect on medical management. JAMA Pediatr. 171:e173438.
3. Willig LK, Petrikin JE, Smith LD, Saunders CJ, Thiffault I, Miller NA, et al. 2015; Whole-genome sequencing for identification of Mendelian disorders in critically ill infants: a retrospective analysis of diagnostic and clinical findings. Lancet Respir Med. 3:377–87. DOI:
10.1016/S2213-2600(15)00139-3. PMID:
25937001.
Article
4. Anazi S, Maddirevula S, Faqeih E, Alsedairy H, Alzahrani F, Shamseldin HE, et al. 2017; Clinical genomics expands the morbid genome of intellectual disability and offers a high diagnostic yield. Mol Psychiatry. 22:615–24. DOI:
10.1038/mp.2016.113. PMID:
27431290.
Article
5. Stark Z, Tan TY, Chong B, Brett GR, Yap P, Walsh M, et al. 2016; A prospective evaluation of whole-exome sequencing as a first-tier molecular test in infants with suspected monogenic disorders. Genet Med. 18:1090–6. DOI:
10.1038/gim.2016.1. PMID:
26938784.
Article
6. Vissers LELM, van Nimwegen KJM, Schieving JH, Kamsteeg EJ, Kleefstra T, Yntema HG, et al. 2017; A clinical utility study of exome sequencing versus conventional genetic testing in pediatric neurology. Genet Med. 19:1055–63. DOI:
10.1038/gim.2017.1. PMID:
28333917. PMCID:
PMC5589982.
Article
7. Farnaes L, Hildreth A, Sweeney NM, Clark MM, Chowdhury S, Nahas S, et al. 2018; Rapid whole-genome sequencing decreases infant morbidity and cost of hospitalization. NPJ Genom Med. 3:10. DOI:
10.1038/s41525-018-0049-4. PMID:
29644095. PMCID:
PMC5884823.
Article
8. Stark Z, Lunke S, Brett GR, Tan NB, Stapleton R, Kumble S, et al. 2018; Meeting the challenges of implementing rapid genomic testing in acute pediatric care. Genet Med. 20:1554–63. DOI:
10.1038/gim.2018.37. PMID:
29543227.
Article
9. van Diemen CC, Kerstjens-Frederikse WS, Bergman KA, de Koning TJ, Sikkema-Raddatz B, van der Velde JK, et al. 2017; Rapid targeted genomics in critically ill newborns. Pediatrics. 140:e20162854. DOI:
10.1542/peds.2016-2854. PMID:
28939701.
Article
14. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. 2010; The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20:1297–303. DOI:
10.1101/gr.107524.110. PMID:
20644199. PMCID:
PMC2928508.
Article
15. Cingolani P, Platts A, Wang le L, Coon M, Nguyen T, Wang L, et al. 2012; A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin). 6:80–92. DOI:
10.4161/fly.19695. PMID:
22728672. PMCID:
PMC3679285.
Article
17. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. 2015; Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 17:405–24. DOI:
10.1038/gim.2015.30. PMID:
25741868. PMCID:
PMC4544753.
Article
18. Landrum MJ, Lee JM, Benson M, Brown G, Chao C, Chitipiralla S, et al. 2016; ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res. 44:D862–8. DOI:
10.1093/nar/gkv1222. PMID:
26582918. PMCID:
PMC4702865.
Article
19. Stenson PD, Mort M, Ball EV, Chapman M, Evans K, Azevedo L, et al. 2020; The Human Gene Mutation Database (HGMD®): optimizing its use in a clinical diagnostic or research setting. Hum Genet. 139:1197–207. DOI:
10.1007/s00439-020-02199-3. PMID:
32596782. PMCID:
PMC7497289.
Article
20. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. 2010; A method and server for predicting damaging missense mutations. Nat Methods. 7:248–9. DOI:
10.1038/nmeth0410-248. PMID:
20354512. PMCID:
PMC2855889.
Article
22. Kumar P, Henikoff S, Ng PC. 2009; Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc. 4:1073–81. DOI:
10.1038/nprot.2009.86. PMID:
19561590.
Article
26. Reva B, Antipin Y, Sander C. 2011; Predicting the functional impact of protein mutations: application to cancer genomics. Nucleic Acids Res. 39:e118. DOI:
10.1093/nar/gkr407. PMID:
21727090. PMCID:
PMC3177186.
Article
27. Schwarz JM, Rödelsperger C, Schuelke M, Seelow D. 2010; MutationTaster evaluates disease-causing potential of sequence alterations. Nat Methods. 7:575–6. DOI:
10.1038/nmeth0810-575. PMID:
20676075.
Article
28. Shihab HA, Gough J, Cooper DN, Stenson PD, Barker GL, Edwards KJ, et al. 2013; Predicting the functional, molecular, and phenotypic consequences of amino acid substitutions using hidden Markov models. Hum Mutat. 34:57–65. DOI:
10.1002/humu.22225. PMID:
23033316. PMCID:
PMC3558800.
Article
29. Cooper GM, Stone EA, Asimenos G, Green ED, Batzoglou S, et al. NISC Comparative Sequencing Program. 2005; Distribution and intensity of constraint in mammalian genomic sequence. Genome Res. 15:901–13. DOI:
10.1101/gr.3577405. PMID:
15965027. PMCID:
PMC1172034.
Article
30. Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, Rosenbloom K, et al. 2005; Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 15:1034–50. DOI:
10.1101/gr.3715005. PMID:
16024819. PMCID:
PMC1182216.
Article
31. Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, et al. 2020; The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 581:434–43. DOI:
10.1038/s41586-020-2308-7. PMID:
32461654. PMCID:
PMC7334197.
Article
32. Karczewski KJ, Weisburd B, Thomas B, Solomonson M, Ruderfer DM, Kavanagh D, et al. 2017; The ExAC browser: displaying reference data information from over 60 000 exomes. Nucleic Acids Res. 45:D840–5. DOI:
10.1093/nar/gkw971. PMID:
27899611. PMCID:
PMC5210650.
Article
33. Jung KS, Hong KW, Jo HY, Choi J, Ban HJ, Cho SB, et al. 2020; KRGDB: the large-scale variant database of 1722 Koreans based on whole genome sequencing. Database (Oxford). 2020:baz146. DOI:
10.1093/database/baaa030. PMID:
32348452. PMCID:
PMC7190023.
Article
34. Lee S, Seo J, Park J, Nam JY, Choi A, Ignatius JS, et al. 2017; Korean Variant Archive (KOVA): a reference database of genetic variations in the Korean population. Sci Rep. 7:4287. DOI:
10.1038/s41598-017-04642-4. PMID:
28655895. PMCID:
PMC5487339.
Article
36. Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, et al. 2017; LightGBM: a highly efficient gradient boosting decision tree. Adv Neural Inf Process Syst. 30:3146–54.
37. Ioannidis NM, Rothstein JH, Pejaver V, Middha S, McDonnell SK, Baheti S, et al. 2016; REVEL: an ensemble method for predicting the pathogenicity of rare missense variants. Am J Hum Genet. 99:877–85. DOI:
10.1016/j.ajhg.2016.08.016. PMID:
27666373. PMCID:
PMC5065685.
Article
38. Rentzsch P, Witten D, Cooper GM, Shendure J, Kircher M. 2019; CADD: predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res. 47:D886–94. DOI:
10.1093/nar/gky1016. PMID:
30371827. PMCID:
PMC6323892.
Article
39. Navarrete R, Leal F, Vega AI, Morais-López A, Garcia-Silva MT, Martín-Hernández E, et al. 2019; Value of genetic analysis for confirming inborn errors of metabolism detected through the Spanish neonatal screening program. Eur J Hum Genet. 27:556–62. DOI:
10.1038/s41431-018-0330-0. PMID:
30626930. PMCID:
PMC6460639.
Article