6. Kazandjian S, Kiliaridis S, Mavropoulos A. 2006; Validity and reliability of a new edge-based computerized method for identification of cephalometric landmarks. Angle Orthod. 76:619–24.
https://pubmed.ncbi.nlm.nih.gov/16808568/.
14. Hong M, Kim I, Cho JH, Kang KH, Kim M, Kim SJ, et al. 2022; Accuracy of artificial intelligence-assisted landmark identification in serial lateral cephalograms of Class III patients who underwent orthodontic treatment and two-jaw orthognathic surgery. Korean J Orthod. 52:287–97.
https://doi.org/10.4041/kjod21.248. DOI:
10.4041/kjod21.248. PMID:
35719042. PMCID:
PMC9314217.
15. Muraev AA, Tsai P, Kibardin I, Oborotistov N, Shirayeva T, Ivanov S, et al. 2020; Frontal cephalometric landmarking: humans vs artificial neural networks. Int J Comput Dent. 23:139–48.
https://pubmed.ncbi.nlm.nih.gov/32555767/.
16. Gil SM, Kim I, Cho JH, Hong M, Kim M, Kim SJ, et al. 2022; Accuracy of auto-identification of the posteroanterior cephalometric landmarks using cascade convolution neural network algorithm and cephalometric images of different quality from nationwide multiple centers. Am J Orthod Dentofacial Orthop. 161:e361–71.
https://doi.org/10.1016/j.ajodo.2021.11.011. DOI:
10.1016/j.ajodo.2021.11.011. PMID:
35074216.
19. He K, Zhang X, Ren S, Sun J. 2016. Deep residual learning for image recognition. Paper presented at: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016 Jun 27-30; Las Vegas, USA. Institute of Electrical and Electronics Engineers (IEEE);Piscataway:
https://doi.org/10.1109/CVPR.2016.90. DOI:
10.1109/CVPR.2016.90. PMID:
26180094.