Korean J Physiol Pharmacol.  2024 Jan;28(1):21-30. 10.4196/kjpp.2024.28.1.21.

Inhibition of Wnt/ββ-catenin signaling by monensin in cervical cancer

Affiliations
  • 1Department of Obstetrics and Gynaecology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441000, China

Abstract

The challenging clinical outcomes associated with advanced cervical cancer underscore the need for a novel therapeutic approach. Monensin, a polyether antibiotic, has recently emerged as a promising candidate with anti-cancer properties. In line with these ongoing efforts, our study presents compelling evidence of monensin's potent efficacy in cervical cancer. Monensin exerts a pronounced inhibitory impact on proliferation and anchorage-independent growth. Additionally, monensin significantly inhibited cervical cancer growth in vivo without causing any discernible toxicity in mice. Mechanism studies show that monensin's anti-cervical cancer activity can be attributed to its capacity to inhibit the Wnt/β-catenin pathway, rather than inducing oxidative stress. Monensin effectively reduces both the levels and activity of β-catenin, and we identify Akt, rather than CK1, as the key player involved in monensin-mediated Wnt/β-catenin inhibition. Rescue studies using Wnt activator and β-catenin-overexpressing cells confirmed that β-catenin inhibition is the mechanism of monensin’s action. As expected, cervical cancer cells exhibiting heightened Wnt/β-catenin activity display increased sensitivity to monensin treatment. In conclusion, our findings provide pre-clinical evidence that supports further exploration of monensin's potential for repurposing in cervical cancer therapy, particularly for patients exhibiting aberrant Wnt/β-catenin activation.

Keyword

Monensin; Oxidative stress; Uterine cervical neoplasms; Wnt beta-catenin signaling pathway

Figure

  • Fig. 1 Monensin inhibits cervical cancer in vitro. (A) Proliferation of cervical cancer cells incubated with monensin for 72 h was assessed by BrdU proliferation assay. (B) Apoptosis of cervical cancer cells incubated with monensin for 72 h was assessed by flow cytometry of Annexin V percentage. (C) Representative images of anchorage-independent growth of CaSki cells in the presence of monensin. (D) Anchorage-independent growth of cervical cancer cells in the presence of monensin was measured by anchorage-independent colony formation assay and quantitative analysis by Image J software. Monensin at 2.5, 5 and 10 µM was used. N = 3. BrdU, 5-bromo-2’-deoxyuridine; DMSO, dimethyl sulfoxide. *p < 0.05 represents significant difference compared with cells without monensin treatment.

  • Fig. 2 Monensin inhibits cervical cancer in a ROS-independent manner. (A) Intracellular ROS level of cervical cancer cells incubated with monensin for 24 h. (B) Proliferation of cervical cancer cells incubated with monensin in the absence or presence of NAC. Representative images (C) and quantification (D) of anchorage-independent growth of cervical cancer cells incubated with monensin (10 µM) in the absence or presence of NAC. The cells were given a pre-treatment of NAC at a concentration of 10 mM before being exposed to monensin. N = 3. ROS, reactive oxygen species; NAC, N-acetylcysteine; DMSO, dimethyl sulfoxide. *p < 0.05 represents significant difference compared with cells without monensin treatment; n.s represents no significant differences between cells with and without NAC.

  • Fig. 3 Monensin inhibits Wnt/β-catenin signaling in cervical cancer cells. (A, B) Western blotting showing the levels of β-catenin, p-β-catenin, Akt and p-Akt in CaSki and HeLa cells treated with monensin. Transcriptional activity level of β-catenin (C) and mRNA level of Wnt-targeted genes (D) in CaSki and HeLa cells treated with monensin. Monensin at 10 µM was used. Results were relative to control (set up as 1). N = 3. DMSO, dimethyl sulfoxide. *p < 0.05 represent significant difference compared with cells without monensin treatment.

  • Fig. 4 Monensin inhibits cervical cancer in a β-catenin-dependent manner. (A) Western blotting showing the levels of β-catenin in CaSki and HeLa cells after transfecting β-catenin overexpression plasmid. Transcriptional activity level of β-catenin (B), proliferation (C) and anchorage-independent growth (D) in CaSki and HeLa cells transfected with β-catenin overexpression plasmid and incubated with monensin. Monensin at 10 µM was used. N = 3. *p < 0.05 represent significant difference between cells transfected with vector and cells transfected with β-catenin overexpression plasmid in the presence of monensin.

  • Fig. 5 Lithium chloride (LiCl) reverses the inhibitory effects of monensin in cervical cancer cells. (A) Western blotting showing the levels of β-catenin in CaSki and HeLa cells incubated with LiCl and monensin. Proliferation (B) and anchorage-independent growth (C) in CaSki and HeLa cells incubated with LiCl and monensin. The cells were given a pre-treatment of LiCl at a concentration of 20 mM before being exposed to monensin. (D) Western blotting showing the levels of β-catenin and (E) transcription activity level of β-catenin in CaSki, SiHa and HeLa cells. N = 3. DMSO, dimethyl sulfoxide. *p < 0.05 represent significant differences between cells with and without LiCl.

  • Fig. 6 Monensin inhibits cervical cancer growth in mice. (A) Mice body weight in control and monensin-treated groups on day 0 and day 30. (B) Representative images of tumors in mice treated with monensin and control. Mice were euthanized at day 30 and tumors were dissected. N = 3. (C) CaSki tumor size in mice treated with monensin at different times. (D) Immunoblotting of phosphor- and total β-catenin and Akt of tumor lysates pooled from control and monensin groups. N = 6. *p < 0.05 represent significant difference compared with mice without monensin treatment.


Reference

1. Tewari KS, Sill MW, Penson RT, Huang H, Ramondetta LM, Landrum LM, Oaknin A, Reid TJ, Leitao MM, Michael HE, DiSaia PJ, Copeland LJ, Creasman WT, Stehman FB, Brady MF, Burger RA, Thigpen JT, Birrer MJ, Waggoner SE, Moore DH, et al. 2017; Bevacizumab for advanced cervical cancer: final overall survival and adverse event analysis of a randomised, controlled, open-label, phase 3 trial (Gynecologic Oncology Group 240). Lancet. 390:1654–1663. DOI: 10.1016/S0140-6736(17)31607-0. PMID: 28756902.
2. Cohen PA, Jhingran A, Oaknin A, Denny L. 2019; Cervical cancer. Lancet. 393:169–182. DOI: 10.1016/S0140-6736(18)32470-X. PMID: 30638582.
3. Yang M, Wang M, Li X, Xie Y, Xia X, Tian J, Zhang K, Tang A. 2018; Wnt signaling in cervical cancer? J Cancer. 9:1277–1286. DOI: 10.7150/jca.22005. PMID: 29675109. PMCID: PMC5907676.
4. McMellen A, Woodruff ER, Corr BR, Bitler BG, Moroney MR. 2020; Wnt signaling in gynecologic malignancies. Int J Mol Sci. 21:4272. DOI: 10.3390/ijms21124272. PMID: 32560059. PMCID: PMC7348953. PMID: 2208e60b068a4396b9afc3f7e3bc0d37.
5. Nachliel E, Finkelstein Y, Gutman M. 1996; The mechanism of monensin-mediated cation exchange based on real time measurements. Biochim Biophys Acta. 1285:131–145. DOI: 10.1016/S0005-2736(96)00149-6. PMID: 8972697.
6. Tyagi M, Patro BS. 2019; Salinomycin reduces growth, proliferation and metastasis of cisplatin resistant breast cancer cells via NF-kB deregulation. Toxicol In Vitro. 60:125–133. DOI: 10.1016/j.tiv.2019.05.004. PMID: 31077746.
7. Gruber M, Handle F, Culig Z. 2020; The stem cell inhibitor salinomycin decreases colony formation potential and tumor-initiating population in docetaxel-sensitive and docetaxel-resistant prostate cancer cells. Prostate. 80:267–273. DOI: 10.1002/pros.23940. PMID: 31834633. PMCID: PMC7003856.
8. Klose J, Trefz S, Wagner T, Steffen L, Preißendörfer Charrier A, Radhakrishnan P, Volz C, Schmidt T, Ulrich A, Dieter SM, Ball C, Glimm H, Schneider M. 2019; Salinomycin: anti-tumor activity in a pre-clinical colorectal cancer model. PLoS One. 14:e0211916. DOI: 10.1371/journal.pone.0211916. PMID: 30763370. PMCID: PMC6375586. PMID: 6da81f28fab84725b2e66e216f853ab4.
9. Li Y, Sun Q, Chen S, Yu X, Jing H. 2022; Monensin inhibits anaplastic thyroid cancer via disrupting mitochondrial respiration and AMPK/mTOR signaling. Anticancer Agents Med Chem. 22:2539–2547. DOI: 10.2174/1871520622666220215123620. PMID: 35168524.
10. Yao S, Wang W, Zhou B, Cui X, Yang H, Zhang S. 2021; Monensin suppresses cell proliferation and invasion in ovarian cancer by enhancing MEK1 SUMOylation. Exp Ther Med. 22:1390. DOI: 10.3892/etm.2021.10826. PMID: 34650638. PMCID: PMC8506924.
11. Yusenko MV, Trentmann A, Andersson MK, Ghani LA, Jakobs A, Arteaga Paz MF, Mikesch JH, Peter von Kries J, Stenman G, Klempnauer KH. 2020; Monensin, a novel potent MYB inhibitor, suppresses proliferation of acute myeloid leukemia and adenoid cystic carcinoma cells. Cancer Lett. 479:61–70. DOI: 10.1016/j.canlet.2020.01.039. PMID: 32014461.
12. Xin H, Li J, Zhang H, Li Y, Zeng S, Wang Z, Zhang Z, Deng F. 2019; Monensin may inhibit melanoma by regulating the selection between differentiation and stemness of melanoma stem cells. PeerJ. 7:e7354. DOI: 10.7717/peerj.7354. PMID: 31380151. PMCID: PMC6661142. PMID: 483baa4e0dc543829126e03b568b52e8.
13. Sun J, Luo Q, Liu L, Yang X, Zhu S, Song G. 2017; Salinomycin attenuates liver cancer stem cell motility by enhancing cell stiffness and increasing F-actin formation via the FAK-ERK1/2 signalling pathway. Toxicology. 384:1–10. DOI: 10.1016/j.tox.2017.04.006. PMID: 28395993.
14. Dayekh K, Johnson-Obaseki S, Corsten M, Villeneuve PJ, Sekhon HS, Weberpals JI, Dimitroulakos J. 2014; Monensin inhibits epidermal growth factor receptor trafficking and activation: synergistic cytotoxicity in combination with EGFR inhibitors. Mol Cancer Ther. 13:2559–2571. DOI: 10.1158/1535-7163.MCT-13-1086. PMID: 25189541.
15. Deng Y, Zhang J, Wang Z, Yan Z, Qiao M, Ye J, Wei Q, Wang J, Wang X, Zhao L, Lu S, Tang S, Mohammed MK, Liu H, Fan J, Zhang F, Zou Y, Liao J, Qi H, Haydon RC, et al. 2015; Antibiotic monensin synergizes with EGFR inhibitors and oxaliplatin to suppress the proliferation of human ovarian cancer cells. Sci Rep. 5:17523. DOI: 10.1038/srep17523. PMID: 26639992. PMCID: PMC4671000.
16. Wang X, Wu X, Zhang Z, Ma C, Wu T, Tang S, Zeng Z, Huang S, Gong C, Yuan C, Zhang L, Feng Y, Huang B, Liu W, Zhang B, Shen Y, Luo W, Wang X, Liu B, Lei Y, et al. 2018; Monensin inhibits cell proliferation and tumor growth of chemo-resistant pancreatic cancer cells by targeting the EGFR signaling pathway. Sci Rep. 8:17914. DOI: 10.1038/s41598-018-36214-5. PMID: 30559409. PMCID: PMC6297164.
17. Markowska A, Kaysiewicz J, Markowska J, Huczyński A. 2019; Doxycycline, salinomycin, monensin and ivermectin repositioned as cancer drugs. Bioorg Med Chem Lett. 29:1549–1554. DOI: 10.1016/j.bmcl.2019.04.045. PMID: 31054863.
18. Wan W, Zhang X, Huang C, Chen L, Yang X, Bao K, Peng T. 2020; Monensin inhibits glioblastoma angiogenesis via targeting multiple growth factor receptor signaling. Biochem Biophys Res Commun. 530:479–484. DOI: 10.1016/j.bbrc.2020.05.057. PMID: 32595038.
19. Ochi K, Suzawa K, Tomida S, Shien K, Takano J, Miyauchi S, Takeda T, Miura A, Araki K, Nakata K, Yamamoto H, Okazaki M, Sugimoto S, Shien T, Yamane M, Azuma K, Okamoto Y, Toyooka S. 2020; Overcoming epithelial-mesenchymal transition-mediated drug resistance with monensin-based combined therapy in non-small cell lung cancer. Biochem Biophys Res Commun. 529:760–765. DOI: 10.1016/j.bbrc.2020.06.077. PMID: 32736704.
20. Gu J, Huang L, Zhang Y. 2020; Monensin inhibits proliferation, migration, and promotes apoptosis of breast cancer cells via downregulating UBA2. Drug Dev Res. 81:745–753. DOI: 10.1002/ddr.21683. PMID: 32462716.
21. Tumova L, Pombinho AR, Vojtechova M, Stancikova J, Gradl D, Krausova M, Sloncova E, Horazna M, Kriz V, Machonova O, Jindrich J, Zdrahal Z, Bartunek P, Korinek V. 2014; Monensin inhibits canonical Wnt signaling in human colorectal cancer cells and suppresses tumor growth in multiple intestinal neoplasia mice. Mol Cancer Ther. 13:812–822. DOI: 10.1158/1535-7163.MCT-13-0625. PMID: 24552772.
22. Isani MA, Gee K, Schall K, Schlieve CR, Fode A, Fowler KL, Grikscheit TC. 2019; Wnt signaling inhibition by monensin results in a period of Hippo pathway activation during intestinal adaptation in zebrafish. Am J Physiol Gastrointest Liver Physiol. 316:G679–G691. DOI: 10.1152/ajpgi.00343.2018. PMID: 30896968.
23. Kapoor A, He R, Venkatadri R, Forman M, Arav-Boger R. 2013; Wnt modulating agents inhibit human cytomegalovirus replication. Antimicrob Agents Chemother. 57:2761–2767. DOI: 10.1128/AAC.00029-13. PMID: 23571549. PMCID: PMC3716142.
24. Guo Y, Hu B, Fu B, Zhu H. 2021; Atovaquone at clinically relevant concentration overcomes chemoresistance in ovarian cancer via inhibiting mitochondrial respiration. Pathol Res Pract. 224:153529. DOI: 10.1016/j.prp.2021.153529. PMID: 34174549.
25. Xu Y, Liao S, Wang L, Wang Y, Wei W, Su K, Tu Y, Zhu S. 2021; Galeterone sensitizes breast cancer to chemotherapy via targeting MNK/eIF4E and β-catenin. Cancer Chemother Pharmacol. 87:85–93. DOI: 10.1007/s00280-020-04195-w. PMID: 33159561.
26. Pappa KI, Kontostathi G, Makridakis M, Lygirou V, Zoidakis J, Daskalakis G, Anagnou NP. 2017; High resolution proteomic analysis of the cervical cancer cell lines secretome documents deregulation of multiple proteases. Cancer Genomics Proteomics. 14:507–521. DOI: 10.21873/cgp.20060. PMID: 29109100. PMCID: PMC6070321.
27. Gao CF, Xie Q, Su YL, Koeman J, Khoo SK, Gustafson M, Knudsen BS, Hay R, Shinomiya N, Vande Woude GF. 2005; Proliferation and invasion: plasticity in tumor cells. Proc Natl Acad Sci U S A. 102:10528–10533. DOI: 10.1073/pnas.0504367102. PMID: 16024725. PMCID: PMC1180792.
28. Kim SH, Kim KY, Yu SN, Park SG, Yu HS, Seo YK, Ahn SC. 2016; Monensin induces PC-3 prostate cancer cell apoptosis via ROS production and Ca2+ homeostasis disruption. Anticancer Res. 36:5835–5843. DOI: 10.21873/anticanres.11168. PMID: 27793906.
29. Ketola K, Vainio P, Fey V, Kallioniemi O, Iljin K. 2010; Monensin is a potent inducer of oxidative stress and inhibitor of androgen signaling leading to apoptosis in prostate cancer cells. Mol Cancer Ther. 9:3175–3185. DOI: 10.1158/1535-7163.MCT-10-0368. PMID: 21159605.
30. Taurin S, Sandbo N, Qin Y, Browning D, Dulin NO. 2006; Phosphorylation of beta-catenin by cyclic AMP-dependent protein kinase. J Biol Chem. 281:9971–9976. DOI: 10.1074/jbc.M508778200. PMID: 16476742.
31. Xia MY, Zhao XY, Huang QL, Sun HY, Sun C, Yuan J, He C, Sun Y, Huang X, Kong W, Kong WJ. 2017; Activation of Wnt/β-catenin signaling by lithium chloride attenuates d-galactose-induced neurodegeneration in the auditory cortex of a rat model of aging. FEBS Open Bio. 7:759–776. DOI: 10.1002/2211-5463.12220. PMID: 28593132. PMCID: PMC5458451.
32. Huczyński A, Ratajczak-Sitarz M, Stefańska J, Katrusiak A, Brzezinski B, Bartl F. 2011; Reinvestigation of the structure of monensin A phenylurethane sodium salt based on X-ray crystallographic and spectroscopic studies, and its activity against hospital strains of methicillin-resistant S. epidermidis and S. aureus. J Antibiot (Tokyo). 64:249–256. DOI: 10.1038/ja.2010.167. PMID: 21224863.
33. Verma SP, Das P. 2018; Monensin induces cell death by autophagy and inhibits matrix metalloproteinase 7 (MMP7) in UOK146 renal cell carcinoma cell line. In Vitro Cell Dev Biol Anim. 54:736–742. DOI: 10.1007/s11626-018-0298-7. PMID: 30324243.
34. Pádua D, Barros R, Amaral AL, Mesquita P, Freire AF, Sousa M, Maia AF, Caiado I, Fernandes H, Pombinho A, Pereira CF, Almeida R. 2020; A SOX2 reporter system identifies gastric cancer stem-like cells sensitive to monensin. Cancers (Basel). 12:495. DOI: 10.3390/cancers12020495. PMID: 32093282. PMCID: PMC7072720. PMID: b8683dbda0674f338fd27f3200bd2552.
35. Yoon MJ, Kang YJ, Kim IY, Kim EH, Lee JA, Lim JH, Kwon TK, Choi KS. 2013; Monensin, a polyether ionophore antibiotic, overcomes TRAIL resistance in glioma cells via endoplasmic reticulum stress, DR5 upregulation and c-FLIP downregulation. Carcinogenesis. 34:1918–1928. DOI: 10.1093/carcin/bgt137. PMID: 23615398.
36. Klose J, Eissele J, Volz C, Schmitt S, Ritter A, Ying S, Schmidt T, Heger U, Schneider M, Ulrich A. 2016; Salinomycin inhibits metastatic colorectal cancer growth and interferes with Wnt/β-catenin signaling in CD133+ human colorectal cancer cells. BMC Cancer. 16:896. DOI: 10.1186/s12885-016-2879-8. PMID: 27855654. PMCID: PMC5114842.
37. Liu Q, Sun J, Luo Q, Ju Y, Song G. 2021; Salinomycin suppresses tumorigenicity of liver cancer stem cells and Wnt/beta-catenin signaling. Curr Stem Cell Res Ther. 16:630–637. DOI: 10.2174/1574888X15666200123121225. PMID: 31971116.
Full Text Links
  • KJPP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr