Anat Cell Biol.  2023 Dec;56(4):538-551. 10.5115/acb.23.101.

A comparative study on the hepatoprotective effect of selenium-nanoparticles and dates flesh extract on carbon tetrachloride induced liver damage in albino rats

Affiliations
  • 1Department of Human Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt
  • 2Department of Human Anatomy and Embryology, Faculty of Medicine, Newgiza University, Giza, Egypt
  • 3Department of Human Anatomy and Embryology, Faculty of Medicine, Beni-Suef University, Beni Suef, Egypt

Abstract

Exposure to environmental pollutants such as carbon tetrachloride (CCL 4 ) causes liver damage. This study aimed to compare the ameliorative activity of the dates flesh extract (DFE) and selenium-nanoparticles (SeNPs) on CCL 4 -induced hepatotoxicity and if DFE could be a useful alternative supplement. Twenty-four male albino rats were enrolled and randomly divided into four equal groups (6 rats in each group): control group received only basal diet with no medications. Group II received CCL 4 in a dose of 0.5 mg/kg intraperitoneal injection twice weekly for four weeks. Group III rats were pretreated with SeNPs in a dose of 2.5 mg/kg once a day orally three times/wk for four weeks alone then combined with the previously described dose of CCL 4 for another four weeks. Group IV rats were pretreated with DFE in a dose of 8 ml of the aqueous extract/kg/d orally for four weeks alone then combined with the previously described dose of CCL 4 for another four weeks. The liver damage was assessed by estimation of plasma concentration of albumin and enzymes activities of alanine aminotransferase and tissue genes expression. Liver oxidation levels were assessed by measuring the tissue concentration of the malondialdehyde, superoxide dismutase, and the total glutathione. Additionally, inflammatory mediators tumour necrosis factor--α and interleukin-6 were estimated. Detecting the liver’s cellular structural damage was done by histopathological and immunohistochemical examination. This study suggests that CCL 4 -induced liver damage in rats can be protected by administration whether the costly SeNPs or the economical DFE.

Keyword

Selenium-nanoparticles; Dates-flesh-extract; Hepatoprotection; Carbon tetrachloride; Vitamin E

Figure

  • Fig. 1 The mean levels of liver functions: (A) ALT [U/L) and (B) albumin [g/dl) were assessed in all studied groups. *Significant difference versus control group, #significant difference versus CCL4 group (P-value<0.05). ALT, alanine aminotransferase; CCL4, carbon tetrachloride; SeNPs, selenium-nanoparticles; DFE, dates flesh extract.

  • Fig. 2 Enzymatic activity of (A) SOD (U/ml), (B) GSH-px (mU/ml), and (C) MDA (nmol/ml) in liver tissue of all studied groups. *Significant difference versus control group, #significant difference versus CCL4 group (P-value<0.05). SOD, superoxide dismutase; GSH- px, glutathione peroxidase; MDA, malondialdehyde; CCL4, carbon tetrachloride; SeNPs, selenium-nanoparticles; DFE, dates flesh extract.

  • Fig. 3 Mean of serum levels of inflammatory markers (A) TNF-α (pg/mg) and (B) IL-6 (pg/mg). *Significant difference versus control group, #significant difference versus CCL4 group (P-value<0.05). TNF-α, tumor necrosis factor-α; IL-6, interleukin-6; CCL4, carbon tetrachloride; SeNPs, selenium-nanoparticles; DFE, dates flesh extract.

  • Fig. 4 Mean of genes expression of (A) TGF-β1, (B) HGF, and (C) MMP-2 in liver tissue of all studied groups. *Significant difference versus control group, #significant difference versus CCL4 group (P-value<0.05). TGF-β1, transforming growth factor-β1; HGF, hepatocellular growth factor; MMP-2, matrix metalloproteinase; CCL4, carbon tetrachloride; SeNPs, selenium-nanoparticles; DFE, dates flesh extract.

  • Fig. 5 H&E-stained liver sections; (A, B) Control group, the hepatic central vein (CV) with polygonal hepatocytes (H) shows acidophilic cytoplasm and vesicular nucleus. Thin wall blood sinusoids (S) radiating between hepatocytes cords with their lining endothelium was seen. (C) CCL4 group, the hepatocytes show disorganization of hepatic cords. The portal regions show cellular degeneration (arrows), some hepatocytes showed pyknotic nuclei (arrow heads) while others have vesicular nuclei (H). Some hepatocytes show rarefication of their cytoplasm (curved arrows) while others have cytoplasmic vacuolations (V) and hemorrhage (stars). (D) Another section in the same group shows marked dilated congested vein in the periportal and pericentral areas (star). Also, cellular degeneration with inflammatory infiltrate (IF) in the portal region (arrows) was seen. (E, F) SeNPs group, the hepatocytes show more or less normal architecture (arrowheads) with normal hepatic cords. Note small dark pyknotic nuclei (arrows) and mild congestion of the CV. (G, H) DFE group, effectively cessation of inflammatory response with the improvement of hepatocytic degeneration and regain of the normal architecture excluding some areas (arrows). Some hepatocytes show cytoplasmic vacuolations (V). CCL4, carbon tetrachloride; SeNPs, selenium-nanoparticles.

  • Fig. 6 Masson’s trichrome-stained liver sections; (A) Control group, show collagen fibers normally distributed (arrows) around the portal tract. (B, C) CCL4 group, shows a marked increase in collagen fibers (arrows) deposition around the blood vessels in the portal area. (D, E) SeNPs group, shows minimal collagen fibers deposition (long arrows) around the blood vessels in the portal area and between cells (short arrows). (F, G) DFE group, shows decreased collagen fibers deposition (arrows) around the blood vessels in the portal area. (H) Statistical analysis of the area percentage of collagen fibers deposition shows *significant difference against the control group. #Represents a significant difference against the CCL4 group. CCL4, carbon tetrachloride; SeNPs, selenium-nanoparticles; DFE, dates flesh extract.

  • Fig. 7 Immunohistochemical staining with α-SMA of (A, B) control group, most of the hepatocytes show negative reaction except few with mild cytoplasmic immune reaction. (C, D) CCL4 group, most hepatocytes have an intense immune reaction in hepatocytes and in-between hepatic lobules. (E, F) SeNPs group, shows a minimal immune reaction in vascular walls (arrows) and very mild reaction in between hepatic lobules. (G, H) DFE group, show mild to a moderate immune reaction in between hepatic lobules and among the hepatocytes (arrows). (I) Statistical analysis of the percentage of α-SMA positive reactions shows *significant difference against the control group. #Represents a significant difference against the CCL4 group. α-SMA, α-smooth muscle actin; CCL4, carbon tetrachloride; SeNPs, selenium-nanoparticles; DFE, dates flesh extract.


Reference

References

1. Sokar SS, El-Sayad ME, Ghoneim ME, Shebl AM. 2017; Combination of Sitagliptin and Silymarin ameliorates liver fibrosis induced by carbon tetrachloride in rats. Biomed Pharmacother. 89:98–107. DOI: 10.1016/j.biopha.2017.02.010. PMID: 28222401.
Article
2. Li S, Tan HY, Wang N, Zhang ZJ, Lao L, Wong CW, Feng Y. 2015; The role of oxidative stress and antioxidants in liver diseases. Int J Mol Sci. 16:26087–124. DOI: 10.3390/ijms161125942. PMID: 26540040. PMCID: PMC4661801. PMID: 0008f260185e42bba02fac6658f95e20.
Article
3. Köse LP, Gülçin İ, Gören AC, Namiesnik J, Martinez-Ayala AL, Gorinstein S. 2015; LC-MS/MS analysis, antioxidant and anticholinergic properties of galanga (Alpinia officinarum Hance) rhizomes. Ind Crops Prod. 74:712–21. DOI: 10.1016/j.indcrop.2015.05.034.
4. Erdemli ME, Gul M, Altinoz E, Aksungur Z, Gul S, Bag HG. 2018; Can crocin play a preventive role in Wistar rats with carbon tetrachloride-induced nephrotoxicity? Iran J Basic Med Sci. 21:382–7. DOI: 10.22038/IJBMS.2018.26101.6412. PMID: 29796221. PMCID: PMC5960754.
5. Upur H, Amat N, Blazeković B, Talip A. 2009; Protective effect of Cichorium glandulosum root extract on carbon tetrachloride-induced and galactosamine-induced hepatotoxicity in mice. Food Chem Toxicol. 47:2022–30. DOI: 10.1016/j.fct.2009.05.022. PMID: 19477217.
Article
6. Ali S, Khan MR, Sajid M. 2017; Protective potential of Parrotiopsis jacquemontiana (Decne) Rehder on carbon tetrachloride induced hepatotoxicity in experimental rats. Biomed Pharmacother. 95:1853–67. DOI: 10.1016/j.biopha.2017.09.003. PMID: 28968930.
Article
7. Işık M, Beydemir Ş, Yılmaz A, Naldan ME, Aslan HE, Gülçin İ. 2017; Oxidative stress and mRNA expression of acetylcholinesterase in the leukocytes of ischemic patients. Biomed Pharmacother. 87:561–7. DOI: 10.1016/j.biopha.2017.01.003. PMID: 28081467.
Article
8. Shim JY, Kim MH, Kim HD, Ahn JY, Yun YS, Song JY. 2010; Protective action of the immunomodulator ginsan against carbon tetrachloride-induced liver injury via control of oxidative stress and the inflammatory response. Toxicol Appl Pharmacol. 242:318–25. DOI: 10.1016/j.taap.2009.11.005. PMID: 19913046.
Article
9. Al-Qarawi AA, Abdel-Rahman H, Ali BH, Mousa HM, El-Mougy SA. 2005; The ameliorative effect of dates (Phoenix dactylifera L.) on ethanol-induced gastric ulcer in rats. J Ethnopharmacol. 98:313–7. DOI: 10.1016/j.jep.2005.01.023. PMID: 15814265.
Article
10. El-Hadary AE, Elsanhoty RM, Ramadan MF. 2019; In vivo protective effect of Rosmarinus officinalis oil against carbon tetrachloride (CCl4)-induced hepatotoxicity in rats. PharmaNutrition. 9:100151. DOI: 10.1016/j.phanu.2019.100151.
11. Bnouham M, Mekhfi H, Legssyer A, Ziyyat A. 2002; Medicinal plants used in the treatment of diabetes in Morocco. Int J Diabetes Metab. 10:33–50.
12. Bouhlali EDT, Hmidani A, Bourkhis B, Khouya T, Ramchoun M, Filali-Zegzouti Y, Alem C. 2020; Phenolic profile and anti-inflammatory activity of four Moroccan date (Phoenix dactylifera L.) seed varieties. Heliyon. 6:e03436. DOI: 10.1016/j.heliyon.2020.e03436. PMID: 32149199. PMCID: PMC7033326.
13. Abdelaziz DH, Ali SA. 2014; The protective effect of Phoenix dactylifera L. seeds against CCl4-induced hepatotoxicity in rats. J Ethnopharmacol. 155:736–43. DOI: 10.1016/j.jep.2014.06.026. PMID: 24945397.
Article
14. Darwish WS, Ikenaka Y, Nakayama SM, Mizukawa H, Ishizuka M. 2016; Constitutive effects of lead on aryl hydrocarbon receptor gene battery and protection by β-carotene and ascorbic acid in human HepG2 cells. J Food Sci. 81:T275–81. DOI: 10.1111/1750-3841.13162. PMID: 26630500.
Article
15. AlFaris NA, AlTamimi JZ, AlGhamdi FA, Albaridi NA, Alzaheb RA, Aljabryn DH, Aljahani AH, AlMousa LA. 2021; Total phenolic content in ripe date fruits (Phoenix dactylifera L.): a systematic review and meta-analysis. Saudi J Biol Sci. 28:3566–77. DOI: 10.1016/j.sjbs.2021.03.033. PMID: 34121900. PMCID: PMC8175999.
16. Hammouda H, Chérif JK, Trabelsi-Ayadi M, Baron A, Guyot S. 2013; Detailed polyphenol and tannin composition and its variability in Tunisian dates (Phoenix dactylifera L.) at different maturity stages. J Agric Food Chem. 61:3252–63. DOI: 10.1021/jf304614j. PMID: 23374033.
Article
17. Vayalil PK. 2012; Date fruits (Phoenix dactylifera Linn): an emerging medicinal food. Crit Rev Food Sci Nutr. 52:249–71. DOI: 10.1080/10408398.2010.499824. PMID: 22214443.
18. Al-Alawi RA, Al-Mashiqri JH, Al-Nadabi JSM, Al-Shihi BI, Baqi Y. 2017; Date palm tree (Phoenix dactylifera L.): natural products and therapeutic options. Front Plant Sci. 8:845. DOI: 10.3389/fpls.2017.00845. PMID: 28588600. PMCID: PMC5440559. PMID: 7a3a2958753544a9b0b41f2307ffe49f.
19. Fallahi S, Rajaei M, Hesam MJ, Koolivand M, Malekzadeh K. 2021; The effect of Phoenix dactylifera pollen on the expression of NRF2, SOD2, CAT, and GPX4 genes, and sperm parameters of fertile and infertile men: a controlled clinical trial. Int J Reprod Biomed. 19:545–58. Erratum in: Int J Reprod Biomed 2021;19:752. DOI: 10.18502/ijrm.v19i8.9623. PMID: 34568737. PMCID: PMC8458916. PMID: df6b966824b74e238b2ba72cb7217346.
20. Bouhlali ET, Alem C, Ennassir J, Benlyas M, Mbark AN, Zegzouti YF. 2017; Phytochemical compositions and antioxidant capacity of three date (Phoenix dactylifera L.) seeds varieties grown in the South East Morocco. J Saudi Soc Agric Sci. 16:350–7. DOI: 10.1016/j.jssas.2015.11.002. PMID: 85992e26842144c4afd6878839a7a906.
21. Wang G, Guo Y, Yang G, Yang L, Ma X, Wang K, Zhu L, Sun J, Wang X, Zhang H. 2016; Mitochondria-mediated protein regulation mechanism of polymorphs-dependent inhibition of nanoselenium on cancer cells. Sci Rep. 6:31427. DOI: 10.1038/srep31427. PMID: 27514819. PMCID: PMC4981849.
Article
22. Deng Y, Man C, Fan Y, Wang Z, Li L, Ren H, Cheng W, Jiang Y. 2015; Preparation of elemental selenium-enriched fermented milk by newly isolated Lactobacillus brevis from kefir grains. Int Dairy J. 44:31–6. DOI: 10.1016/j.idairyj.2014.12.008.
Article
23. Khurana A, Tekula S, Saifi MA, Venkatesh P, Godugu C. 2019; Therapeutic applications of selenium nanoparticles. Biomed Pharmacother. 111:802–12. DOI: 10.1016/j.biopha.2018.12.146. PMID: 30616079.
Article
24. Makni M, Chtourou Y, Fetoui H, Garoui el M, Boudawara T, Zeghal N. 2011; Evaluation of the antioxidant, anti-inflammatory and hepatoprotective properties of vanillin in carbon tetrachloride-treated rats. Eur J Pharmacol. 668:133–9. DOI: 10.1016/j.ejphar.2011.07.001. PMID: 21777577.
Article
25. Zhang J, Wang X, Xu T. 2008; Elemental selenium at nano size (Nano-Se) as a potential chemopreventive agent with reduced risk of selenium toxicity: comparison with se-methylselenocysteine in mice. Toxicol Sci. 101:22–31. DOI: 10.1093/toxsci/kfm221. PMID: 17728283.
Article
26. Al-Rasheed NM, Attia HA, Mohamad RA, Al-Rasheed NM, Al-Amin MA, Al-Onazi A. 2015; Aqueous date flesh or pits extract attenuates liver fibrosis via suppression of hepatic stellate cell activation and reduction of inflammatory cytokines, transforming growth factor- β 1 and angiogenic markers in carbon tetrachloride-intoxicated rats. Evid Based Complement Alternat Med. 2015:247357. DOI: 10.1155/2015/247357. PMID: 25945106. PMCID: PMC4402562.
27. Abdel Aziz MT, Atta HM, Mahfouz S, Fouad HH, Roshdy NK, Ahmed HH, Rashed LA, Sabry D, Hassouna AA, Hasan NM. 2007; Therapeutic potential of bone marrow-derived mesenchymal stem cells on experimental liver fibrosis. Clin Biochem. 40:893–9. DOI: 10.1016/j.clinbiochem.2007.04.017. PMID: 17543295.
Article
28. Magid ADA, Ali HA, Ahmed MA. 2021; Therapeutic and protective effect of selenium nanoparticles against experimentally induced hepatotoxicity in rats. Benha Vet Med J. 40:100–4. DOI: 10.21608/bvmj.2021.69077.1383.
Article
29. Sherman KE. McNally PR, editor. 2010. Evaluation of abnormal liver tests. GI/Liver Secrets Plus. 4th ed. Mosby;p. 94–9. DOI: 10.1016/B978-0-323-06397-5.00014-9. PMID: 20152156. PMCID: PMC3102235.
30. Pleban PA, Munyani A, Beachum J. 1982; Determination of selenium concentration and glutathione peroxidase activity in plasma and erythrocytes. Clin Chem. 28:311–6. DOI: 10.1093/clinchem/28.2.311. PMID: 7055952.
Article
31. Aebi H. 1984; Catalase in vitro. Methods Enzymol. 105:121–6. DOI: 10.1016/S0076-6879(84)05016-3. PMID: 6727660.
32. Misra HP, Fridovich I. 1972; The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem. 247:3170–5. DOI: 10.1016/S0021-9258(19)45228-9.
Article
33. Lian J, Lu Y, Xu P, Ai A, Zhou G, Liu W, Cao Y, Zhang WJ. 2014; Prevention of liver fibrosis by intrasplenic injection of high-density cultured bone marrow cells in a rat chronic liver injury model. PLoS One. 9:e103603. DOI: 10.1371/journal.pone.0103603. PMID: 25255097. PMCID: PMC4177810. PMID: 99ab7afa19524965826e16411034c1b2.
Article
34. Ebaid H, Al-Tamimi J, Hassan I, Habila MA, Rady AM, Alhazza IM, Ahmed AM. 2021; Effect of selenium nanoparticles on carbon tetrachloride-induced hepatotoxicity in the Swiss albino rats. Appl Sci. 11:3044. DOI: 10.3390/app11073044. PMID: d010d38c2061437880170517a0fa01fc.
Article
35. Dehkordi AJ, Mohebbi AN, Aslani MR, Ghoreyshi SM. 2017; Evaluation of nanoselenium (Nano-Se) effect on hematological and serum biochemical parameters of rat in experimentally lead poisoning. Hum Exp Toxicol. 36:421–7. DOI: 10.1177/0960327116651124. PMID: 27251766.
Article
36. Bhattacharjee S, Debnath G, Das AR, Saha AK, Das P. 2017; Characterization of silver nanoparticles synthesized using an endophytic fungus, Penicillium oxalicum having potential antimicrobial activity. Adv Nat Sci Nanosci Nanotechnol. 8:045008. DOI: 10.1088/2043-6254/aa84ec.
37. Bouhlali EDT, Derouich M, Hmidani A, Bourkhis B, Khouya T, Filali-Zegzouti Y, Alem C. 2021; Protective effect of Phoenix dactylifera L. seeds against paracetamol-induced hepatotoxicity in rats: a comparison with vitamin C. ScientificWorldJournal. 2021:6618273. DOI: 10.1155/2021/6618273. PMID: 34326710. PMCID: PMC8277504. PMID: ed8306e989cd44ebb872de1f7df25939.
38. Dong S, Chen QL, Song YN, Sun Y, Wei B, Li XY, Hu YY, Liu P, Su SB. 2016; Mechanisms of CCl4-induced liver fibrosis with combined transcriptomic and proteomic analysis. J Toxicol Sci. 41:561–72. DOI: 10.2131/jts.41.561. PMID: 27452039.
39. Shrestha N, Chand L, Han MK, Lee SO, Kim CY, Jeong YJ. 2016; Glutamine inhibits CCl4 induced liver fibrosis in mice and TGF-β1 mediated epithelial-mesenchymal transition in mouse hepatocytes. Food Chem Toxicol. 93:129–37. DOI: 10.1016/j.fct.2016.04.024. PMID: 27137983.
Article
40. Salem GA, Shaban A, Diab HA, Elsaghayer WA, Mjedib MD, Hnesh AM, Sahu RP. 2018; Phoenix dactylifera protects against oxidative stress and hepatic injury induced by paracetamol intoxication in rats. Biomed Pharmacother. 104:366–74. DOI: 10.1016/j.biopha.2018.05.049. PMID: 29778019.
Article
41. Pettie JM, Caparrotta TM, Hunter RW, Morrison EE, Wood DM, Dargan PI, Thanacoody RH, Thomas SHL, Elamin MEMO, Francis B, Webb DJ, Sandilands EA, Eddleston M, Dear JW. 2019; Safety and efficacy of the SNAP 12-hour acetylcysteine regimen for the treatment of paracetamol overdose. EClinicalMedicine. 11:11–7. DOI: 10.1016/j.eclinm.2019.04.005. PMID: 31317129. PMCID: PMC6610779.
Article
42. Abdeen A, Samir A, Elkomy A, Aboubaker M, Habotta OA, Gaber A, Alsanie WF, Abdullah O, Elnoury HA, Baioumy B, Ibrahim SF, Abdelkader A. 2021; The potential antioxidant bioactivity of date palm fruit against gentamicin-mediated hepato-renal injury in male albino rats. Biomed Pharmacother. 143:112154. DOI: 10.1016/j.biopha.2021.112154. PMID: 34649332.
Article
43. Habib HM, Ibrahim WH. 2011; Effect of date seeds on oxidative damage and antioxidant status in vivo. J Sci Food Agric. 91:1674–9. DOI: 10.1002/jsfa.4368. PMID: 21480263.
44. Essa MM, Singh V, Guizani N, Manivasagam T, Thenmozhi AJ, Bhat A, Ray B, Chidambaram SB. 2019; Phoenix dactylifera L. fruits date fruit ameliorate oxidative stress in 3-NP intoxicated PC12 cells. Int J Nutr Pharmacol Neurol Dis. 9:41–7.
45. Xiao J, Khan MZ, Ma Y, Alugongo GM, Ma J, Chen T, Khan A, Cao Z. 2021; The Antioxidant properties of selenium and vitamin E; their role in periparturient dairy cattle health regulation. Antioxidants (Basel). 10:1555. DOI: 10.3390/antiox10101555. PMID: 34679690. PMCID: PMC8532922. PMID: 6ab108ec83da4f38b40e30bb107df2ae.
Article
46. Siddiqui S, Ahmad R, Khan MA, Upadhyay S, Husain I, ivastava AN Sr. 2019; Cytostatic and anti-tumor potential of Ajwa date pulp against human hepatocellular carcinoma HepG2 cells. Sci Rep. 9:245. DOI: 10.1038/s41598-018-36475-0. PMID: 30664656. PMCID: PMC6341075.
Article
47. Pan C, Zhao Y, Liao SF, Chen F, Qin S, Wu X, Zhou H, Huang K. 2011; Effect of selenium-enriched probiotics on laying performance, egg quality, egg selenium content, and egg glutathione peroxidase activity. J Agric Food Chem. 59:11424–31. DOI: 10.1021/jf202014k. PMID: 21942342.
Article
48. Friedman SL. 2008; Mechanisms of hepatic fibrogenesis. Gastroenterology. 134:1655–69. DOI: 10.1053/j.gastro.2008.03.003. PMID: 18471545. PMCID: PMC2888539.
Article
49. Kang GJ, Kang NJ, Han SC, Koo DH, Kang HK, Yoo BS, Yoo ES. 2012; The chloroform fraction of Carpinus tschonoskii leaves inhibits the production of inflammatory mediators in HaCaT keratinocytes and RAW264.7 macrophages. Toxicol Res. 28:255–62. DOI: 10.5487/TR.2012.28.4.255. PMID: 24278618. PMCID: PMC3834429.
Article
50. Gangemi S, Gofita E, Costa C, Teodoro M, Briguglio G, Nikitovic D, Tzanakakis G, Tsatsakis AM, Wilks MF, Spandidos DA, Fenga C. 2016; Occupational and environmental exposure to pesticides and cytokine pathways in chronic diseases (Review). Int J Mol Med. 38:1012–20. DOI: 10.3892/ijmm.2016.2728. PMID: 27600395. PMCID: PMC5029960.
Article
51. Ali SI, Gaafar AA, Abdallah AA, El-Daly SM, ElBana M, Hussein J. 2018; Mitigation of alpha-cypermethrin-induced hepatotoxicity in rats by tribulus terrestris rich in antioxidant compounds. Jordan J Biol Sci. 11:517–25.
52. Khan F, Khan TJ, Kalamegam G, Pushparaj PN, Chaudhary A, Abuzenadah A, Kumosani T, Barbour E, Al-Qahtani M. 2017; Anti-cancer effects of Ajwa dates (Phoenix dactylifera L.) in diethylnitrosamine induced hepatocellular carcinoma in Wistar rats. BMC Complement Altern Med. 17:418. DOI: 10.1186/s12906-017-1926-6. PMID: 28830415. PMCID: PMC5567468.
Article
53. Malyar RM, Naseri E, Li H, Ali I, Farid RA, Liu D, Maroof K, Nasim M, Banuree SAH, Huang K, Waldron KJ, Chen X. 2021; Hepatoprotective effects of selenium-enriched probiotics supplementation on heat-stressed Wistar rat through anti-inflammatory and antioxidant effects. Biol Trace Elem Res. 199:3445–56. DOI: 10.1007/s12011-020-02475-3. PMID: 33161525.
Article
54. Ebaid H, Bashandy SA, Alhazza IM, Rady A, El-Shehry S. 2013; Folic acid and melatonin ameliorate carbon tetrachloride-induced hepatic injury, oxidative stress and inflammation in rats. Nutr Metab (Lond). 10:20. DOI: 10.1186/1743-7075-10-20. PMID: 23374533. PMCID: PMC3570377. PMID: 05d5ab0e5c0249ce932928bc719b1a8d.
Article
55. Basu S. 2003; Carbon tetrachloride-induced lipid peroxidation: eicosanoid formation and their regulation by antioxidant nutrients. Toxicology. 189:113–27. DOI: 10.1016/S0300-483X(03)00157-4. PMID: 12821287.
Article
56. Rashid U, Khan MR, Sajid M. 2016; Hepatoprotective potential of Fagonia olivieri DC. against acetaminophen induced toxicity in rat. BMC Complement Altern Med. 16:449. DOI: 10.1186/s12906-016-1445-x. PMID: 27829418. PMCID: PMC5103455.
Article
57. Yan JK, Qiu WY, Wang YY, Wang WH, Yang Y, Zhang HN. 2018; Fabrication and stabilization of biocompatible selenium nanoparticles by carboxylic curdlans with various molecular properties. Carbohydr Polym. 179:19–27. DOI: 10.1016/j.carbpol.2017.09.063. PMID: 29111042.
Article
58. Al-Farsi M, Alasalvar C, Morris A, Baron M, Shahidi F. 2005; Comparison of antioxidant activity, anthocyanins, carotenoids, and phenolics of three native fresh and sun-dried date (Phoenix dactylifera L.) varieties grown in Oman. J Agric Food Chem. 53:7592–9. DOI: 10.1021/jf050579q. PMID: 16159191.
59. Roshankhah S, Abdolmaleki A, Salahshoor MR. 2020; Anti-inflammatory, anti-apoptotic, and antioxidant actions of Middle Eastern Phoenix dactylifera extract on mercury-induced hepatotoxicity in vivo. Mol Biol Rep. 47:6053–65. DOI: 10.1007/s11033-020-05680-4. PMID: 32737827.
Article
60. Jung YJ, Ryu KH, Cho SJ, Woo SY, Seoh JY, Chun CH, Yoo K, Moon IH, Han HS. 2006; Syngenic bone marrow cells restore hepatic function in carbon tetrachloride-induced mouse liver injury. Stem Cells Dev. 15:687–95. DOI: 10.1089/scd.2006.15.687. PMID: 17105404.
Article
61. Abdelgwad M, Ewaiss M, Sabry D, Khalifa WA, Altaib ZM, Alhelf M. 2022; Comparative study on effect of mesenchymal stem cells and endothelial progenitor cells on treatment of experimental CCL4-induced liver fibrosis. Arch Physiol Biochem. 128:1071–80. DOI: 10.1080/13813455.2020.1752256. PMID: 32374186.
Article
62. Noh JR, Gang GT, Kim YH, Yang KJ, Hwang JH, Lee HS, Oh WK, Song KS, Lee CH. 2010; Antioxidant effects of the chestnut (Castanea crenata) inner shell extract in t-BHP-treated HepG2 cells, and CCl4- and high-fat diet-treated mice. Food Chem Toxicol. 48:3177–83. DOI: 10.1016/j.fct.2010.08.018. PMID: 20732376.
Article
63. Hamid M, Abdulrahim Y, Liu D, Qian G, Khan A, Huang K. 2018; The hepatoprotective effect of selenium-enriched yeast and Gum Arabic combination on carbon tetrachloride-induced chronic liver injury in rats. J Food Sci. 83:525–34. DOI: 10.1111/1750-3841.14030. PMID: 29350750.
Article
64. Gad El-Hak HN, Mahmoud HS, Ahmed EA, Elnegris HM, Aldayel TS, Abdelrazek HMA, Soliman MTA, El-Menyawy MAI. 2022; Methanolic Phoenix dactylifera L. extract ameliorates cisplatin-induced hepatic injury in male rats. Nutrients. 14:1025. DOI: 10.3390/nu14051025. PMID: 35268000. PMCID: PMC8912432. PMID: 5d3a62ee0a3341c6bad3f746e1411ab0.
Article
65. Al-Qarawi AA, Mousa HM, Ali BEH, Abdel-Rahman H, El-Mougy SA. 2004; Protective effect of extracts from dates (Phoenix dactylifera L.) on carbon tetrachloride-induced hepatotoxicity in rats. Int J Appl Res Vet Med. 2:176–80.
66. Mansouri A, Embarek G, Kokkalou E, Kefalas P. 2005; Phenolic profile and antioxidant activity of the Algerian ripe date palm fruit (Phoenix dactylifera). Food Chem. 89:411–20. DOI: 10.1016/j.foodchem.2004.02.051.
67. Saryono S, Warsinah W, Isworo A, Efendi F. 2018; Anti-inflammatory effect of date seeds (Phoenix dactylifera L) on carrageenan-induced edema in rats. Trop J Pharm Res. 17:2455–61. DOI: 10.4314/tjpr.v17i12.22.
Article
68. Alghamdi MA, Hussein AM, Al-Eitan LN, Elnashar E, Elgendy A, Abdalla AM, Ahmed S, Khalil WA. 2020; Possible mechanisms for the renoprotective effects of date palm fruits and seeds extracts against renal ischemia/reperfusion injury in rats. Biomed Pharmacother. 130:110540. DOI: 10.1016/j.biopha.2020.110540. PMID: 32763814.
Article
Full Text Links
  • ACB
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr