5. Pachunka E, Windle J, Schuetzler R, Fruhling A. Natural-setting PHR usability evaluation using the NASA TLX to measure cognitive load of patients. In : Proceedings of the 52nd Hawaii International Conference on System Sciences; 2016 Jan 8–11; Maui, HI. p. 3954–63.
Article
6. Ehrler F, Weinhold T, Joe J, Lovis C, Blondon K.A Mobile app (BEDSide Mobility) to support nurses’ tasks at the patient’s bedside: usability study. JMIR Mhealth Uhealth. 2018; 6(3):e57.
https://doi.org/10.2196/mhealth.9079.
Article
7. International Organization for Standardization. Ergonomics of human-system interaction - Part 11: Usability: Definitions and concepts. Geneva, Switzerland: International Organization for Standardization;2018. (ISO 9241-11:2018).
9. Cooper G. Research into cognitive load theory and instructional design at UNSW. Sydney, Australia: School of Education Studies, University of New South Wales;1998.
11. Zu T, Hutson J, Loschky LC, Rebello NS. Use of eye-tracking technology to investigate cognitive load theory [Internet]. Ithaca (NY): arXiv.org;2018. [cited at 2023 Oct 31]. Available from:
https://arxiv.org/abs/1803.02499.
12. Tracy JP, Albers MJ. Measuring cognitive load to test the usability of web sites. In : Proceedings of the 53rd Annual Conference of the Society for Technical Communication; 2006 May 7–10; Las Vegas, NV. p. 256–60.
15. Kushniruk AW, Patel VL. Cognitive approaches to the evaluation of healthcare information systems. Anderson JG, Aydin CE, editors. Evaluating the organizational impact of healthcare information systems. New York (NY): Springer;2005. p. 144–73.
https://doi.org/10.1007/0-387-30329-4_6.
Article
16. Klein G, Militello L. Some guidelines for conducting a cognitive task analysis. Advances in human performance and cognitive engineering research. Bingley, UK: Emerald Group Publishing Limited;2001. p. 163–99.
https://doi.org/10.1016/S1479-3601(01)01006-2.
Article
17. Card SK, Moran TP, Newell A. The psychology of human-computer interaction. Boca Raton (FL): CRC Press;2018.
18. Rasmussen R, Kushniruk A.The long and twisting path: an efficiency evaluation of an electronic whiteboard system. Stud Health Technol Inform. 2013; 183:174–8.
19. Gross M, Roberts C, Stinson K, Wiltman S.Improving medical device usability by reducing complexity using a novel predictive models-based user interface assessment tool. Hum Factors Healthc. 2023; 3:100041.
https://doi.org/10.1016/j.hfh.2023.100041.
Article
20. Setthawong P, Setthawong R.2019; Updated Goals Operators Methods and Selection Rules (GOMS) with touch screen operations for quantitative analysis of user interfaces. Int J Adv Sci Eng Inf Technol. 2019; 9(1):258–65.
https://doi.org/10.18517/IJASEIT.9.1.7865.
Article
22. Nystrom A. Gesture-level model: a modified Keystroke-level model for tasks on mobile touchscreen devices [master’s thesis]. Uppsala, Sweden: Uppsala University;2018.
24. Li H, Liu Y, Liu J, Wang X, Li Y, Rau PL. Extended KLM for mobile phone interaction: a user study result. In : Proceedings of the Extended Abstracts on Human Factors in Computing Systems; 2010 Apr 10–15; Atlanta, GA. p. 3517–22.
https://doi.org/10.1145/1753846.1754011.
Article
27. Al Ghalayini M, Antoun J, Moacdieh NM.Too much or too little? Investigating the usability of high and low data displays of the same electronic medical record. Health Informatics J. 2020; 26(1):88–103.
https://doi.org/10.1177/1460458218813725.
Article
28. Suebnukarn S, Rittipakorn P, Thongyoi B, Boonpitak K, Wongsapai M, Pakdeesan P.Usability assessment of an electronic health record in a comprehensive dental clinic. SpringerPlus. 2013; 2:220.
https://doi.org/10.1186/2193-1801-2-220.
Article