1. Mauro D, Thomas R, Guggino G, Lories R, Brown MA, Ciccia F. 2021; Ankylosing spondylitis: an autoimmune or autoinflammatory disease? Nat Rev Rheumatol. 17:387–404. DOI:
10.1038/s41584-021-00625-y. PMID:
34113018.
Article
4. Karim MS, Madamanchi A, Dutko JA, Mullins MC, Umulis DM. 2021; Heterodimer-heterotetramer formation mediates enhanced sensor activity in a biophysical model for BMP signaling. PLoS Comput Biol. 17:e1009422. DOI:
10.1371/journal.pcbi.1009422. PMID:
34591841. PMCID:
PMC8509922.
Article
6. Lories RJ, Derese I, Luyten FP. 2005; Modulation of bone morphogenetic protein signaling inhibits the onset and progression of ankylosing enthesitis. J Clin Invest. 115:1571–9. DOI:
10.1172/JCI23738. PMID:
15902307. PMCID:
PMC1090472.
Article
7. Ding L, Yin Y, Hou Y, Jiang H, Zhang J, Dai Z, et al. 2021; microRNA-214-3p suppresses ankylosing spondylitis fibroblast osteogenesis
via BMP-TGF
β axis and BMP2. Front Endocrinol (Lausanne). 11:609753. DOI:
10.3389/fendo.2020.609753. PMID:
33935961. PMCID:
PMC8082363.
Article
8. Chen HA, Chen CH, Lin YJ, Chen PC, Chen WS, Lu CL, et al. 2010; Association of bone morphogenetic proteins with spinal fusion in ankylosing spondylitis. J Rheumatol. 37:2126–32. DOI:
10.3899/jrheum.100200. PMID:
20682677.
Article
9. Qi D, Tian X, Wang Y, Zheng G, Zhang X. 2020; BMP2 variants in the risk of ankylosing spondylitis. J Cell Biochem. 121:3935–40. DOI:
10.1002/jcb.29563. PMID:
31713925.
Article
10. Xie Z, Wang P, Li Y, Deng W, Zhang X, Su H, et al. 2016; Imbalance between bone morphogenetic protein 2 and Noggin induces abnormal osteogenic differentiation of mesenchymal stem cells in ankylosing spondylitis. Arthritis Rheumatol. 68:430–40. DOI:
10.1002/art.39433. PMID:
26413886.
Article
11. Liu Z, Wang P, Cen S, Gao L, Xie Z, Wu X, et al. 2019; Increased BMPR1A expression enhances the adipogenic differentiation of mesenchymal stem cells in patients with ankylosing spondylitis. Stem Cells Int. 2019:4143167. DOI:
10.1155/2019/4143167. PMID:
31827527. PMCID:
PMC6885782.
Article
12. Cortes A, Maksymowych WP, Wordsworth BP, Inman RD, Danoy P, Rahman P, et al. 2015; Association study of genes related to bone formation and resorption and the extent of radiographic change in ankylosing spondylitis. Ann Rheum Dis. 74:1387–93. DOI:
10.1136/annrheumdis-2013-204835. PMID:
24651623. PMCID:
PMC4470170.
Article
13. Skillington J, Choy L, Derynck R. 2002; Bone morphogenetic protein and retinoic acid signaling cooperate to induce osteoblast differentiation of preadipocytes. J Cell Biol. 159:135–46. DOI:
10.1083/jcb.200204060. PMID:
12379805. PMCID:
PMC2173483.
Article
14. van der Linden S, Valkenburg HA, Cats A. 1984; Evaluation of diagnostic criteria for ankylosing spondylitis. A proposal for modification of the New York criteria. Arthritis Rheum. 27:361–8. DOI:
10.1002/art.1780270401. PMID:
6231933.
15. Jo S, Lee JS, Nam B, Lee YL, Kim H, Lee EY, et al. 2022; SOX9+ enthesis cells are associated with spinal ankylosis in ankylosing spondylitis. Osteoarthritis Cartilage. 30:280–90. DOI:
10.1016/j.joca.2021.11.013. PMID:
34826571.
Article
16. Jo S, Lee SH, Park J, Nam B, Kim H, Youn J, et al. 2023; Platelet-derived growth factor B is a key element in the pathological bone formation of ankylosing spondylitis. J Bone Miner Res. 38:300–12. DOI:
10.1002/jbmr.4751. PMID:
36422470.
Article
17. Park PR, Jo S, Jin SH, Kim TJ. 2020; MicroRNA-10b plays a role in bone formation by suppressing interleukin-22 in ankylosing spondylitis. J Rheum Dis. 27:61–7. DOI:
10.4078/jrd.2020.27.1.61.
Article
18. Jo S, Han J, Lee YL, Yoon S, Lee J, Wang SE, et al. 2019; Regulation of osteoblasts by alkaline phosphatase in ankylosing spondylitis. Int J Rheum Dis. 22:252–61. DOI:
10.1111/1756-185X.13419. PMID:
30415492.
Article
19. Jo S, Kang S, Han J, Choi SH, Park YS, Sung IH, et al. 2018; Accelerated osteogenic differentiation of human bone-derived cells in ankylosing spondylitis. J Bone Miner Metab. 36:307–13. DOI:
10.1007/s00774-017-0846-3. PMID:
28589411.
Article
20. Jo S, Wang SE, Lee YL, Kang S, Lee B, Han J, et al. 2018; IL-17A induces osteoblast differentiation by activating JAK2/STAT3 in ankylosing spondylitis. Arthritis Res Ther. 20:115. DOI:
10.1186/s13075-018-1582-3. PMID:
29880011. PMCID:
PMC5992730.
Article
21. Zheng G, Xie Z, Wang P, Li J, Li M, Cen S, et al. 2019; Enhanced osteogenic differentiation of mesenchymal stem cells in ankylosing spondylitis: a study based on a three-dimensional biomimetic environment. Cell Death Dis. 10:350. DOI:
10.1038/s41419-019-1586-1. PMID:
31024000. PMCID:
PMC6484086.
Article
22. Koo BS, Oh JS, Park SY, Shin JH, Ahn GY, Lee S, et al. 2020; Tumour necrosis factor inhibitors slow radiographic progression in patients with ankylosing spondylitis: 18-year real-world evidence. Ann Rheum Dis. 79:1327–32. DOI:
10.1136/annrheumdis-2019-216741. PMID:
32660979.
Article
23. Lim KE, Park NR, Che X, Han MS, Jeong JH, Kim SY, et al. 2015; Core binding factor β of osteoblasts maintains cortical bone mass via stabilization of Runx2 in mice. J Bone Miner Res. 30:715–22. DOI:
10.1002/jbmr.2397. PMID:
25358268. PMCID:
PMC7363154.
Article
24. Gomez-Puerto MC, Iyengar PV, García de Vinuesa A, Ten Dijke P, Sanchez-Duffhues G. 2019; Bone morphogenetic protein receptor signal transduction in human disease. J Pathol. 247:9–20. DOI:
10.1002/path.5170. PMID:
30246251. PMCID:
PMC6587955.
26. Croes M, Kruyt MC, Groen WM, van Dorenmalen KMA, Dhert WJA, Öner FC, et al. 2018; Interleukin 17 enhances bone morphogenetic protein-2-induced ectopic bone formation. Sci Rep. 8:7269. DOI:
10.1038/s41598-018-25564-9. PMID:
29740080. PMCID:
PMC5940874.
Article
27. Park MC, Park YB, Lee SK. 2008; Relationship of bone morphogenetic proteins to disease activity and radiographic damage in patients with ankylosing spondylitis. Scand J Rheumatol. 37:200–4. DOI:
10.1080/03009740701774941. PMID:
18465455.
Article
28. Lories RJ, Derese I, Ceuppens JL, Luyten FP. 2003; Bone morphogenetic proteins 2 and 6, expressed in arthritic synovium, are regulated by proinflammatory cytokines and differentially modulate fibroblast-like synoviocyte apoptosis. Arthritis Rheum. 48:2807–18. DOI:
10.1002/art.11389. PMID:
14558086.
Article
29. Briolay A, El Jamal A, Arnolfo P, Le Goff B, Blanchard F, Magne D, et al. 2020; Enhanced BMP-2/BMP-4 ratio in patients with peripheral spondyloarthritis and in cytokine- and stretch-stimulated mouse chondrocytes. Arthritis Res Ther. 22:234. DOI:
10.1186/s13075-020-02330-9. PMID:
33046134. PMCID:
PMC7552569.
Article
30. Grandon B, Rincheval-Arnold A, Jah N, Corsi JM, Araujo LM, Glatigny S, et al. 2019; HLA-B27 alters BMP/TGFβ signalling in
Drosophila, revealing putative pathogenic mechanism for spondyloarthritis. Ann Rheum Dis. 78:1653–62. DOI:
10.1136/annrheumdis-2019-215832. PMID:
31563893.
Article
31. Jah N, Jobart-Malfait A, Ermoza K, Noteuil A, Chiocchia G, Breban M, et al. 2020; HLA-B27 subtypes predisposing to ankylosing spondylitis accumulate in an endoplasmic reticulum-derived compartment apart from the peptide-loading complex. Arthritis Rheumatol. 72:1534–46. DOI:
10.1002/art.41281. PMID:
32270915.
32. Yu PB, Deng DY, Lai CS, Hong CC, Cuny GD, Bouxsein ML, et al. 2008; BMP type I receptor inhibition reduces heterotopic [corrected] ossification. Nat Med. 14:1363–9. Erratum in: Nat Med 2009;15:117. DOI:
10.1038/nm.1888. PMID:
19029982. PMCID:
PMC2846458.
33. Breban M, Glatigny S, Cherqaoui B, Beaufrère M, Lauraine M, Rincheval-Arnold A, et al. 2021; Lessons on SpA pathogenesis from animal models. Semin Immunopathol. 43:207–19. DOI:
10.1007/s00281-020-00832-x. PMID:
33449154.
Article