Korean J Gastroenterol.  2023 Aug;82(2):63-72. 10.4166/kjg.2023.083.

Obesity and Colorectal Cancer

Affiliations
  • 1Division of Gastroenterology, Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea

Abstract

The prevalence of obesity has increased significantly worldwide, and this trend is likely to continue in the coming years. There is substantial evidence that obesity plays a crucial role in the development of colorectal cancer. Epidemiological data have consistently demonstrated a correlation between obesity and colorectal cancer. Insulin resistance, hyperinsulinemia, chronic inflammation, altered levels of growth factors, adipocytokines, and various hormones are plausible biological mechanisms. In addition, obesity has been shown to have an impact on recurrence, treatment success, and overall survival. There are some reports, although the evidence is not conclusive, that weight loss and lifestyle changes such as dietary modification and physical activity can reduce the risk of colorectal cancer. The understanding that obesity is a potentially modifiable risk factor that can affect the incidence and prognosis of colorectal cancer is crucial knowledge that can have an impact on the prevention and treatment of the condition.

Keyword

Obesity; Colorectal cancer; Risk factor

Figure

  • Fig. 1 Potential factors believed to link obesity and colorectal cancer are summarized. TNF, tumor necrosis factor; IL-6, interleukin-6; MIF, macrophage migration inhibitory factor; IGF-1, insulin-like growth factor-1; FFAs, free fatty acids; CRC, colorectal cancer.


Reference

1. Analysis of the status of malnutrition and obesity treatment in the last five years (2017-2021). [Internet]. The Health Insurance Review and Assessment Service;cited 2022 Apr 21. Available from: https://www.hira.or.kr/bbsDummy.do?pgmid=HIRAA020041000100&brdScnBltNo=4&brdBltNo=10575&pageIndex=1.
2. Chang P, Friedenberg F. 2014; Obesity and GERD. Gastroenterol Clin North Am. 43:161–173. DOI: 10.1016/j.gtc.2013.11.009. PMID: 24503366. PMCID: PMC3920303.
Article
3. Lee CG, Lee JK, Kang YS, et al. 2015; Visceral abdominal obesity is associated with an increased risk of irritable bowel syndrome. Am J Gastroenterol. 110:310–319. DOI: 10.1038/ajg.2014.422. PMID: 25583325.
Article
4. Agarwal A, Singh A, Mehtab W, et al. 2021; Patients with celiac disease are at high risk of developing metabolic syndrome and fatty liver. Intest Res. 19:106–114. DOI: 10.5217/ir.2019.00136. PMID: 32312034. PMCID: PMC7873403.
Article
5. Friedenreich CM, Ryder-Burbidge C, McNeil J. 2021; Physical activity, obesity and sedentary behavior in cancer etiology: epidemiologic evidence and biologic mechanisms. Mol Oncol. 15:790–800. DOI: 10.1002/1878-0261.12772. PMID: 32741068. PMCID: PMC7931121.
6. Belladelli F, Montorsi F, Martini A. 2022; Metabolic syndrome, obesity and cancer risk. Curr Opin Urol. 32:594–597. DOI: 10.1097/MOU.0000000000001041. PMID: 36081396.
Article
7. Death rates by major carcinoma in 2021. [Internet]. National Cancer Information Center;cited 2022 Sep 28. Available from: https://www.cancer.go.kr/lay1/S1T645C646/contents.do.
8. Data on health insurance treatment status for colorectal cancer from 2012 to 2021. [Internet]. National Health Insurance Service;cited 2022 Oct 20. Available from: https://www.nhis.or.kr/nhis/together/wbhaea01600m01.do?mode=view&articleNo=10828825&article.offset=0&articleLimit=10&srSearchVal=%EB%8C%80%EC%9E%A5%EC%95%94.
9. Chen Q, Wang J, Yang J, et al. 2015; Association between adult weight gain and colorectal cancer: a dose-response meta-analysis of observational studies. Int J Cancer. 136:2880–2889. DOI: 10.1002/ijc.29331. PMID: 25395274.
Article
10. Garcia H, Song M. 2019; Early-life obesity and adulthood colorectal cancer risk: a meta-analysis. Rev Panam Salud Publica. 43:e3. DOI: 10.26633/RPSP.2019.3. PMID: 31093227. PMCID: PMC6393738.
Article
11. Sninsky JA, Shore BM, Lupu GV, Crockett SD. 2022; Risk factors for colorectal polyps and cancer. Gastrointest Endosc Clin N Am. 32:195–213. DOI: 10.1016/j.giec.2021.12.008. PMID: 35361331.
Article
12. Øines M, Helsingen LM, Bretthauer M, Emilsson L. 2017; Epidemiology and risk factors of colorectal polyps. Best Pract Res Clin Gastroenterol. 31:419–424. DOI: 10.1016/j.bpg.2017.06.004. PMID: 28842051.
Article
13. Schlesinger S, Aleksandrova K, Abar L, et al. 2017; Adult weight gain and colorectal adenomas-a systematic review and meta-analysis. Ann Oncol. 28:1217–1229. DOI: 10.1093/annonc/mdx080. PMID: 28327995.
Article
14. Anderson JC, Calderwood AH, Christensen BC, Robinson CM, Amos CI, Butterly L. 2018; Smoking and other risk factors in individuals with synchronous conventional high-risk adenomas and clinically significant serrated polyps. Am J Gastroenterol. 113:1828–1835. DOI: 10.1038/s41395-018-0393-0. PMID: 30385834. PMCID: PMC6768665.
Article
15. Bailie L, Loughrey MB, Coleman HG. 2017; Lifestyle risk factors for serrated colorectal polyps: A systematic review and meta-analysis. Gastroenterology. 152:92–104. DOI: 10.1053/j.gastro.2016.09.003. PMID: 27639804.
Article
16. Wong MC, Chan CH, Cheung W, et al. 2018; Association between investigator-measured body-mass index and colorectal adenoma: a systematic review and meta-analysis of 168,201 subjects. Eur J Epidemiol. 33:15–26. DOI: 10.1007/s10654-017-0336-x. PMID: 29288474. PMCID: PMC5803281.
17. Gathirua-Mwangi WG, Monahan P, Song Y, et al. 2017; Changes in adult BMI and waist circumference are associated with increased risk of advanced colorectal neoplasia. Dig Dis Sci. 62:3177–3185. DOI: 10.1007/s10620-017-4778-5. PMID: 28983748. PMCID: PMC5653429.
Article
18. Lauby-Secretan B, Scoccianti C, Loomis D, Grosse Y, Bianchini F, Straif K. 2016; Body fatness and cancer--viewpoint of the IARC working group. N Engl J Med. 375:794–798. DOI: 10.1056/NEJMsr1606602. PMID: 27557308. PMCID: PMC6754861.
Article
19. Ma Y, Yang Y, Wang F, et al. 2013; Obesity and risk of colorectal cancer: a systematic review of prospective studies. PLoS One. 8:e53916. DOI: 10.1371/journal.pone.0053916. PMID: 23349764. PMCID: PMC3547959.
Article
20. Abar L, Vieira AR, Aune D, et al. 2018; Height and body fatness and colorectal cancer risk: an update of the WCRF-AICR systematic review of published prospective studies. Eur J Nutr. 57:1701–1720. DOI: 10.1007/s00394-017-1557-1. PMID: 29080978. PMCID: PMC6060816.
Article
21. Ning Y, Wang L, Giovannucci EL. 2010; A quantitative analysis of body mass index and colorectal cancer: findings from 56 observational studies. Obes Rev. 11:19–30. DOI: 10.1111/j.1467-789X.2009.00613.x. PMID: 19538439.
Article
22. O'Sullivan DE, Sutherland RL, Town S, et al. 2022; Risk factors for early-onset colorectal cancer: a systematic review and meta-analysis. Clin Gastroenterol Hepatol. 20:1229–1240.e5. DOI: 10.1016/j.cgh.2021.01.037. PMID: 33524598.
23. Liu PH, Wu K, Ng K, et al. 2019; Association of obesity with risk of early-onset colorectal cancer among women. JAMA Oncol. 5:37–44. DOI: 10.1001/jamaoncol.2018.4280. PMID: 30326010. PMCID: PMC6382547.
Article
24. Mili N, Paschou SA, Goulis DG, Dimopoulos MA, Lambrinoudaki I, Psaltopoulou T. 2021; Obesity, metabolic syndrome, and cancer: pathophysiological and therapeutic associations. Endocrine. 74:478–497. DOI: 10.1007/s12020-021-02884-x. PMID: 34625915.
Article
25. Jin EH, Han K, Lee DH, et al. 2022; Association between metabolic syndrome and the risk of colorectal cancer diagnosed before age 50 years according to tumor location. Gastroenterology. 163:637–648.e2. DOI: 10.1053/j.gastro.2022.05.032. PMID: 35643169.
26. Lee J, Lee KS, Kim H, et al. 2020; The relationship between metabolic syndrome and the incidence of colorectal cancer. Environ Health Prev Med. 25:6. DOI: 10.1186/s12199-020-00845-w. PMID: 32075578. PMCID: PMC7031951.
27. Chen H, Zheng X, Zong X, et al. 2021; Metabolic syndrome, metabolic comorbid conditions and risk of early-onset colorectal cancer. Gut. 70:1147–1154. DOI: 10.1136/gutjnl-2020-321661. PMID: 33037055. PMCID: PMC8032822.
28. Xu P, Li J, Liu J, Wang J, Wu Z, Zhang X, Zhai Y. 2017; Mature adipocytes observed to undergo reproliferation and polyploidy. FEBS Open Bio. 7:652–658. DOI: 10.1002/2211-5463.12207. PMID: 28469978. PMCID: PMC5407891.
29. Cirillo F, Catellani C, Sartori C, Lazzeroni P, Amarri S, Street ME. 2019; Obesity, insulin resistance, and colorectal cancer: could miRNA dysregulation play A role? Int J Mol Sci. 20:2922. DOI: 10.3390/ijms20122922. PMID: 31207998. PMCID: PMC6628223.
Article
30. Kobayashi H, Gieniec KA, Lannagan TRM, et al. 2022; The origin and contribution of cancer-associated fibroblasts in colorectal carcinogenesis. Gastroenterology. 162:890–906. DOI: 10.1053/j.gastro.2021.11.037. PMID: 34883119. PMCID: PMC8881386.
Article
31. Li C, Quan J, Wei R, et al. 2020; Leptin overexpression as a poor prognostic factor for colorectal cancer. Biomed Res Int. 2020:7532514. DOI: 10.1155/2020/7532514. PMID: 32596369. PMCID: PMC7292990.
Article
32. Chen YC, Chien CY, Hsu CC, et al. 2021; Obesity-associated leptin promotes chemoresistance in colorectal cancer through YAP-dependent AXL upregulation. Am J Cancer Res. 11:4220–4240.
33. Lee H, Lee IS, Choue R. 2013; Obesity, inflammation and diet. Pediatr Gastroenterol Hepatol Nutr. 16:143–152. DOI: 10.5223/pghn.2013.16.3.143. PMID: 24224147. PMCID: PMC3819692.
Article
34. Rasic I, Rebic V, Rasic A, Aksamija G, Radovic S. 2018; The association of simultaneous increase in interleukin-6, C reactive protein, and matrix metalloproteinase-9 serum levels with increasing stages of colorectal cancer. J Oncol. 2018:2830503. DOI: 10.1155/2018/2830503. PMID: 30154846. PMCID: PMC6091449.
Article
35. Chávez-Talavera O, Tailleux A, Lefebvre P, Staels B. 2017; Bile acid control of metabolism and inflammation in obesity, type 2 diabetes, dyslipidemia, and nonalcoholic fatty liver disease. Gastroenterology. 152:1679–1694.e3. DOI: 10.1053/j.gastro.2017.01.055. PMID: 28214524.
Article
36. La Frano MR, Hernandez-Carretero A, Weber N, et al. 2017; Diet-induced obesity and weight loss alter bile acid concentrations and bile acid-sensitive gene expression in insulin target tissues of C57BL/6J mice. Nutr Res. 46:11–21. DOI: 10.1016/j.nutres.2017.07.006. PMID: 29173647.
Article
37. Lin H, An Y, Tang H, Wang Y. 2019; Alterations of bile acids and gut microbiota in obesity induced by high fat diet in rat model. J Agric Food Chem. 67:3624–3632. DOI: 10.1021/acs.jafc.9b00249. PMID: 30832480.
Article
38. Centuori SM, Gomes CJ, Trujillo J, et al. 2016; Deoxycholic acid mediates non-canonical EGFR-MAPK activation through the induction of calcium signaling in colon cancer cells. Biochim Biophys Acta. 1861:663–670. DOI: 10.1016/j.bbalip.2016.04.006. PMID: 27086143. PMCID: PMC4900466.
Article
39. Ochsenkühn T, Bayerdörffer E, Meining A, et al. 1999; Colonic mucosal proliferation is related to serum deoxycholic acid levels. Cancer. 85:1664–1669. DOI: 10.1002/(SICI)1097-0142(19990415)85:8<1664::AID-CNCR4>3.0.CO;2-O.
Article
40. Nguyen TT, Ung TT, Kim NH, Jung YD. 2018; Role of bile acids in colon carcinogenesis. World J Clin Cases. 6:577–588. DOI: 10.12998/wjcc.v6.i13.577. PMID: 30430113. PMCID: PMC6232560.
Article
41. Kim DS, Scherer PE. 2021; Obesity, diabetes, and increased cancer progression. Diabetes Metab J. 45:799–812. DOI: 10.4093/dmj.2021.0077. PMID: 34847640. PMCID: PMC8640143.
Article
42. Renehan AG, Frystyk J, Flyvbjerg A. 2006; Obesity and cancer risk: the role of the insulin-IGF axis. Trends Endocrinol Metab. 17:328–336. DOI: 10.1016/j.tem.2006.08.006. PMID: 16956771.
Article
43. Chen J, Katsifis A, Hu C, Huang XF. 2011; Insulin decreases therapeutic efficacy in colon cancer cell line HT29 via the activation of the PI3K/Akt pathway. Curr Drug Discov Technol. 8:119–125. DOI: 10.2174/157016311795563820. PMID: 21513489.
Article
44. Stefani C, Miricescu D, Stanescu-Spinu II, et al. 2021; Growth factors, PI3K/AKT/mTOR and MAPK signaling pathways in colorectal cancer pathogenesis: Where are we now? Int J Mol Sci. 22:10260. DOI: 10.3390/ijms221910260. PMID: 34638601. PMCID: PMC8508474.
Article
45. Kasprzak A. 2021; Insulin-like growth factor 1 (IGF-1) signaling in glucose metabolism in colorectal cancer. Int J Mol Sci. 22:6434. DOI: 10.3390/ijms22126434. PMID: 34208601. PMCID: PMC8234711.
Article
46. Narayanankutty A. 2019; PI3K/Akt/mTOR pathway as a therapeutic target for colorectal cancer: A review of preclinical and clinical evidence. Curr Drug Targets. 20:1217–1226. DOI: 10.2174/1389450120666190618123846. PMID: 31215384.
Article
47. Wang L, Li S, Luo H, Lu Q, Yu S. 2022; PCSK9 promotes the progression and metastasis of colon cancer cells through regulation of EMT and PI3K/AKT signaling in tumor cells and phenotypic polarization of macrophages. J Exp Clin Cancer Res. 41:303. DOI: 10.1186/s13046-022-02477-0. PMID: 36242053. PMCID: PMC9563506.
Article
48. Zhao Y, Scott A, Zhang P, et al. 2017; Regulation of paxillin-p130-PI3K-AKT signaling axis by Src and PTPRT impacts colon tumorigenesis. Oncotarget. 8:48782–48793. DOI: 10.18632/oncotarget.10654. PMID: 27447856. PMCID: PMC5564724.
Article
49. Chen J, Elfiky A, Han M, Chen C, Saif MW. 2014; The role of Src in colon cancer and its therapeutic implications. Clin Colorectal Cancer. 13:5–13. DOI: 10.1016/j.clcc.2013.10.003. PMID: 24361441.
Article
50. Zhu S, Bjorge JD, Fujita DJ. 2007; PTP1B contributes to the oncogenic properties of colon cancer cells through Src activation. Cancer Res. 67:10129–10137. DOI: 10.1158/0008-5472.CAN-06-4338. PMID: 17974954.
Article
51. Sekharam M, Nasir A, Kaiser HE, Coppola D. 2003; Insulin-like growth factor 1 receptor activates c-SRC and modifies transformation and motility of colon cancer in vitro. Anticancer Res. 23:1517–1524.
52. Engin A. 2017; Diet-Induced obesity and the mechanism of leptin resistance. Adv Exp Med Biol. 960:381–397. DOI: 10.1007/978-3-319-48382-5_16. PMID: 28585208.
Article
53. Aleksandrova K, Schlesinger S, Fedirko V, et al. 2017; Metabolic mediators of the association between adult weight gain and colorectal cancer: Data from the european prospective investigation into cancer and nutrition (EPIC) cohort. Am J Epidemiol. 185:751–764. DOI: 10.1093/aje/kww194. PMID: 28387787. PMCID: PMC5860400.
Article
54. Endo H, Hosono K, Uchiyama T, et al. 2011; Leptin acts as a growth factor for colorectal tumours at stages subsequent to tumour initiation in murine colon carcinogenesis. Gut. 60:1363–1371. DOI: 10.1136/gut.2010.235754. PMID: 21406387.
Article
55. Nigro E, Scudiero O, Monaco ML, et al. 2014; New insight into adiponectin role in obesity and obesity-related diseases. Biomed Res Int. 2014:658913. DOI: 10.1155/2014/658913. PMID: 25110685. PMCID: PMC4109424.
Article
56. Duraiyarasan S, Adefuye M, Manjunatha N, Ganduri V, Rajasekaran K. 2022; Colon cancer and obesity: A narrative review. Cureus. 14:e27589. DOI: 10.7759/cureus.27589.
Article
57. Sugiyama M, Takahashi H, Hosono K, et al. 2009; Adiponectin inhibits colorectal cancer cell growth through the AMPK/mTOR pathway. Int J Oncol. 34:339–344.
Article
58. Fujisawa T, Endo H, Tomimoto A, et al. 2008; Adiponectin suppresses colorectal carcinogenesis under the high-fat diet condition. Gut. 57:1531–1538. DOI: 10.1136/gut.2008.159293. PMID: 18676419. PMCID: PMC2582344.
Article
59. Wei EK, Giovannucci E, Fuchs CS, Willett WC, Mantzoros CS. 2005; Low plasma adiponectin levels and risk of colorectal cancer in men: a prospective study. J Natl Cancer Inst. 97:1688–1694. DOI: 10.1093/jnci/dji376. PMID: 16288122.
Article
60. Moon HS, Liu X, Nagel JM, et al. 2013; Salutary effects of adiponectin on colon cancer: in vivo and in vitro studies in mice. Gut. 62:561–570. DOI: 10.1136/gutjnl-2012-302092. PMID: 22735569.
Article
61. Ellulu MS, Patimah I, Khaza'ai H, Rahmat A, Abed Y. 2017; Obesity and inflammation: the linking mechanism and the complications. Arch Med Sci. 13:851–863. DOI: 10.5114/aoms.2016.58928. PMID: 28721154. PMCID: PMC5507106.
Article
62. Fontana L, Eagon JC, Trujillo ME, Scherer PE, Klein S. 2007; Visceral fat adipokine secretion is associated with systemic inflammation in obese humans. Diabetes. 56:1010–1013. DOI: 10.2337/db06-1656. PMID: 17287468.
Article
63. Nagasaki T, Hara M, Nakanishi H, Takahashi H, Sato M, Takeyama H. 2014; Interleukin-6 released by colon cancer-associated fibroblasts is critical for tumour angiogenesis: anti-interleukin-6 receptor antibody suppressed angiogenesis and inhibited tumour-stroma interaction. Br J Cancer. 110:469–478. DOI: 10.1038/bjc.2013.748. PMID: 24346288. PMCID: PMC3899773.
Article
64. Rodrigues KF, Pietrani NT, Bosco AA, Campos FMF, Sandrim VC, Gomes KB. 2017; IL-6, TNF-α, and IL-10 levels/polymorphisms and their association with type 2 diabetes mellitus and obesity in Brazilian individuals. Arch Endocrinol Metab. 61:438–446. DOI: 10.1590/2359-3997000000254. PMID: 28225860.
Article
65. Wei X, Li X, Kong F, et al. 2018; [TNF-α activates Wnt signaling pathway to promote the invasion of human colon cancer stem cells]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 34:982–988. Chinese.
66. Kern L, Mittenbühler MJ, Vesting AJ, et al. 2018; Obesity-induced TNFα and IL-6 signaling: The missing link between obesity and inflammation-driven liver and colorectal cancers. Cancers (Basel). 11:24. DOI: 10.3390/cancers11010024. PMID: 30591653. PMCID: PMC6356226.
Article
67. Kaltschmidt C, Banz-Jansen C, Benhidjeb T, et al. 2019; A role for NF-κB in organ specific cancer and cancer stem cells. Cancers (Basel). 11:655. DOI: 10.3390/cancers11050655. PMID: 31083587. PMCID: PMC6563002.
Article
68. Pikarsky E, Porat RM, Stein I, et al. 2004; NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature. 431:461–466. DOI: 10.1038/nature02924. PMID: 15329734.
Article
69. Kwaifa IK, Bahari H, Yong YK, Noor SM. 2020; Endothelial dysfunction in obesity-induced inflammation: Molecular mechanisms and clinical implications. Biomolecules. 10:291. DOI: 10.3390/biom10020291. PMID: 32069832. PMCID: PMC7072669.
Article
70. Yoshimura T. 2018; The chemokine MCP-1 (CCL2) in the host interaction with cancer: a foe or ally? Cell Mol Immunol. 15:335–345. DOI: 10.1038/cmi.2017.135. PMID: 29375123. PMCID: PMC6052833.
Article
71. Molnár I. 2020; Interactions among thyroid hormone (FT4), chemokine (MCP-1) and neurotrophin (NGF-β) levels studied in Hungarian postmenopausal and obese women. Cytokine. 127:154948. DOI: 10.1016/j.cyto.2019.154948. PMID: 31901598.
Article
72. Wang H, Tian T, Zhang J. 2021; Tumor-associated macrophages (TAMs) in colorectal cancer (CRC): From mechanism to therapy and prognosis. Int J Mol Sci. 22:8470. DOI: 10.3390/ijms22168470. PMID: 34445193. PMCID: PMC8395168.
Article
73. McClellan JL, Davis JM, Steiner JL, et al. 2012; Linking tumor-associated macrophages, inflammation, and intestinal tumorigenesis: role of MCP-1. Am J Physiol Gastrointest Liver Physiol. 303:G1087–G1095. DOI: 10.1152/ajpgi.00252.2012. PMID: 23019193. PMCID: PMC3517651.
Article
74. Nieman KM, Kenny HA, Penicka CV, et al. 2011; Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat Med. 17:1498–1503. DOI: 10.1038/nm.2492. PMID: 22037646. PMCID: PMC4157349.
Article
75. Martin-Padura I, Gregato G, Marighetti P, et al. 2012; The white adipose tissue used in lipotransfer procedures is a rich reservoir of CD34+ progenitors able to promote cancer progression. Cancer Res. 72:325–334. DOI: 10.1158/0008-5472.CAN-11-1739. PMID: 22052460.
Article
76. Mukherjee A, Bilecz AJ, Lengyel E. 2022; The adipocyte microenvironment and cancer. Cancer Metastasis Rev. 41:575–587. DOI: 10.1007/s10555-022-10059-x. PMID: 35941408.
Article
77. Xiao L, Wang J, Li J, et al. 2015; RORα inhibits adipocyte-conditioned medium-induced colorectal cancer cell proliferation and migration and chick embryo chorioallantoic membrane angiopoiesis. Am J Physiol Cell Physiol. 308:C385–C396. DOI: 10.1152/ajpcell.00091.2014. PMID: 25500738.
Article
78. Amemori S, Ootani A, Aoki S, et al. 2007; Adipocytes and preadipocytes promote the proliferation of colon cancer cells in vitro. Am J Physiol Gastrointest Liver Physiol. 292:G923–G929. DOI: 10.1152/ajpgi.00145.2006. PMID: 17170030.
Article
79. Martinez-Outschoorn UE, Sotgia F, Lisanti MP. 2012; Power surge: supporting cells "fuel" cancer cell mitochondria. Cell Metab. 15:4–5. DOI: 10.1016/j.cmet.2011.12.011. PMID: 22225869.
Article
80. Murphy N, Moreno V, Hughes DJ, et al. 2019; Lifestyle and dietary environmental factors in colorectal cancer susceptibility. Mol Aspects Med. 69:2–9. DOI: 10.1016/j.mam.2019.06.005. PMID: 31233770.
Article
81. Vergara-Castañeda HA, Guevara-González RG, Ramos-Gómez M, et al. 2010; Non-digestible fraction of cooked bean (Phaseolus vulgaris L.) cultivar Bayo Madero suppresses colonic aberrant crypt foci in azoxymethane-induced rats. Food Funct. 1:294–300. DOI: 10.1039/c0fo00130a. PMID: 21776479.
Article
82. Reddy BS, Hirose Y, Cohen LA, Simi B, Cooma I, Rao CV. 2000; Preventive potential of wheat bran fractions against experimental colon carcinogenesis: implications for human colon cancer prevention. Cancer Res. 60:4792–4797.
83. Aune D, Chan DS, Lau R, et al. 2011; Dietary fibre, whole grains, and risk of colorectal cancer: systematic review and dose-response meta-analysis of prospective studies. BMJ. 343:d6617. DOI: 10.1136/bmj.d6617. PMID: 22074852. PMCID: PMC3213242.
Article
84. Ben Q, Sun Y, Chai R, Qian A, Xu B, Yuan Y. 2014; Dietary fiber intake reduces risk for colorectal adenoma: a meta-analysis. Gastroenterology. 146:689–699.e6. DOI: 10.1053/j.gastro.2013.11.003. PMID: 24216326.
Article
85. Zhang S, Jia Z, Yan Z, Yang J. 2017; Consumption of fruits and vegetables and risk of renal cell carcinoma: a meta-analysis of observational studies. Oncotarget. 8:27892–27903. DOI: 10.18632/oncotarget.15841. PMID: 28427188. PMCID: PMC5438616.
Article
86. Aune D, Lau R, Chan DS, et al. 2011; Nonlinear reduction in risk for colorectal cancer by fruit and vegetable intake based on meta-analysis of prospective studies. Gastroenterology. 141:106–118. DOI: 10.1053/j.gastro.2011.04.013. PMID: 21600207.
Article
87. Asghar M, George L, Lokhandwala MF. 2007; Exercise decreases oxidative stress and inflammation and restores renal dopamine D1 receptor function in old rats. Am J Physiol Renal Physiol. 293:F914–F919. DOI: 10.1152/ajprenal.00272.2007. PMID: 17634393.
Article
88. Cirillo D, Rachiglio AM, la Montagna R, Giordano A, Normanno N. 2008; Leptin signaling in breast cancer: an overview. J Cell Biochem. 105:956–964. DOI: 10.1002/jcb.21911. PMID: 18821585.
Article
89. Ju J, Nolan B, Cheh M, et al. 2008; Voluntary exercise inhibits intestinal tumorigenesis in Apc(Min/+) mice and azoxymethane/dextran sulfate sodium-treated mice. BMC Cancer. 8:316. DOI: 10.1186/1471-2407-8-316. PMID: 18976499. PMCID: PMC2635383.
90. Rezende LFM, Sá TH, Markozannes G, et al. 2018; Physical activity and cancer: an umbrella review of the literature including 22 major anatomical sites and 770000 cancer cases. Br J Sports Med. 52:826–833. DOI: 10.1136/bjsports-2017-098391. PMID: 29146752.
Article
91. Moore SC, Lee IM, Weiderpass E, et al. 2016; Association of leisure-time physical activity with risk of 26 types of cancer in 1.44 million adults. JAMA Intern Med. 176:816–825. DOI: 10.1001/jamainternmed.2016.1548. PMID: 27183032. PMCID: PMC5812009.
Article
92. Matthews CE, Moore SC, Arem H, et al. 2020; Amount and intensity of leisure-time physical activity and lower cancer risk. J Clin Oncol. 38:686–697. DOI: 10.1200/JCO.19.02407. PMID: 31877085. PMCID: PMC7048166.
Article
93. Wolin KY, Yan Y, Colditz GA. 2011; Physical activity and risk of colon adenoma: a meta-analysis. Br J Cancer. 104:882–885. DOI: 10.1038/sj.bjc.6606045. PMID: 21304525. PMCID: PMC3048199.
Article
94. Zhou Y, Wu L, Li X, Wu X, Li B. 2012; Outcome of laparoscopic colorectal surgery in obese and nonobese patients: a meta-analysis. Surg Endosc. 26:783–789. DOI: 10.1007/s00464-011-1952-2. PMID: 22011944.
Article
95. Makino T, Shukla PJ, Rubino F, Milsom JW. 2012; The impact of obesity on perioperative outcomes after laparoscopic colorectal resection. Ann Surg. 255:228–236. DOI: 10.1097/SLA.0b013e31823dcbf7. PMID: 22190113.
Article
96. Qiu Y, Liu Q, Chen G, et al. 2016; Outcome of rectal cancer surgery in obese and nonobese patients: a meta-analysis. World J Surg Oncol. 14:23. DOI: 10.1186/s12957-016-0775-y. PMID: 26810563. PMCID: PMC4727287.
Article
97. Almasaudi AS, McSorley ST, Edwards CA, McMillan DC. 2018; The relationship between body mass index and short term postoperative outcomes in patients undergoing potentially curative surgery for colorectal cancer: A systematic review and meta-analysis. Crit Rev Oncol Hematol. 121:68–73. DOI: 10.1016/j.critrevonc.2017.12.004. PMID: 29279101.
Article
98. Fung A, Trabulsi N, Morris M, et al. 2017; Laparoscopic colorectal cancer resections in the obese: a systematic review. Surg Endosc. 31:2072–2088. DOI: 10.1007/s00464-016-5209-y. PMID: 27778169.
Article
99. Himbert C, Ose J, Nattenmüller J, et al. 2019; Body fatness, adipose tissue compartments, and biomarkers of inflammation and angiogenesis in colorectal cancer: The ColoCare study. Cancer Epidemiol Biomarkers Prev. 28:76–82. DOI: 10.1158/1055-9965.EPI-18-0654. PMID: 30333223. PMCID: PMC6324954.
Article
100. Guiu B, Petit JM, Bonnetain F, et al. 2010; Visceral fat area is an independent predictive biomarker of outcome after first-line bevacizumab-based treatment in metastatic colorectal cancer. Gut. 59:341–347. DOI: 10.1136/gut.2009.188946. PMID: 19837679.
Article
101. Artaç M, Korkmaz L, Coşkun HŞ, et al. 2019; Bevacuzimab may be less effective in obese metastatic colorectal cancer patients. J Gastrointest Cancer. 50:214–220. DOI: 10.1007/s12029-017-0047-2. PMID: 29302856.
Article
102. Miyamoto Y, Oki E, Emi Y, et al. 2018; Low visceral fat content is a negative predictive marker for bevacizumab in metastatic colorectal cancer. Anticancer Res. 38:491–499. DOI: 10.21873/anticanres.12249.
103. Cybulska-Stopa B, Ługowska I, Wiśniowski R, et al. 2020; Overweight is associated with better prognosis in metastatic colorectal cancer patients treated with bevacizumab plus FOLFOX chemotherapy. Contemp Oncol (Pozn). 24:34–41. DOI: 10.5114/wo.2020.94728. PMID: 32514236. PMCID: PMC7265962.
104. Bardou M, Barkun AN, Martel M. 2013; Obesity and colorectal cancer. Gut. 62:933–947. DOI: 10.1136/gutjnl-2013-304701. PMID: 23481261.
105. Lee J, Meyerhardt JA, Giovannucci E, Jeon JY. 2015; Association between body mass index and prognosis of colorectal cancer: a meta-analysis of prospective cohort studies. PLoS One. 10:e0120706. DOI: 10.1371/journal.pone.0120706. PMID: 25811460. PMCID: PMC4374868.
106. Jaspan V, Lin K, Popov V. 2021; The impact of anthropometric parameters on colorectal cancer prognosis: A systematic review and meta-analysis. Crit Rev Oncol Hematol. 159:103232. DOI: 10.1016/j.critrevonc.2021.103232. PMID: 33497759.
107. Griggs JJ, Bohlke K, Balaban EP, et al. 2021; Appropriate systemic therapy dosing for obese adult patients with cancer: ASCO guideline update. J Clin Oncol. 39:2037–2048. DOI: 10.1200/JCO.21.00471. PMID: 33939491.
Article
108. Hourdequin KC, Schpero WL, McKenna DR, Piazik BL, Larson RJ. 2013; Toxic effect of chemotherapy dosing using actual body weight in obese versus normal-weight patients: a systematic review and meta-analysis. Ann Oncol. 24:2952–2962. DOI: 10.1093/annonc/mdt294. PMID: 23965736.
Article
109. Stocker G, Hacker UT, Fiteni F, et al. 2018; Clinical consequences of chemotherapy dose reduction in obese patients with stage III colon cancer: A retrospective analysis from the PETACC 3 study. Eur J Cancer. 99:49–57. DOI: 10.1016/j.ejca.2018.05.004. PMID: 29906734.
Article
110. Christakoudi S, Pagoni P, Ferrari P, et al. 2021; Weight change in middle adulthood and risk of cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. Int J Cancer. 148:1637–1651. DOI: 10.1002/ijc.33339. PMID: 33038275.
Article
111. Luo J, Hendryx M, Manson JE, et al. 2019; Intentional weight loss and obesity-related cancer risk. JNCI Cancer Spectr. 3:pkz054. DOI: 10.1093/jncics/pkz054. PMID: 31737862. PMCID: PMC6795232.
Article
112. Khalid SI, Maasarani S, Wiegmann J, et al. 2022; Association of bariatric surgery and risk of cancer in patients with morbid obesity. Ann Surg. 275:1–6. DOI: 10.1097/SLA.0000000000005035. PMID: 34183506.
Article
113. Taube M, Peltonen M, Sjöholm K, et al. 2021; Long-term incidence of colorectal cancer after bariatric surgery or usual care in the Swedish Obese Subjects study. PLoS One. 16:e0248550. DOI: 10.1371/journal.pone.0248550. PMID: 33764991. PMCID: PMC7993847.
Article
114. Mackenzie H, Markar SR, Askari A, et al. 2018; Obesity surgery and risk of cancer. Br J Surg. 105:1650–1657. DOI: 10.1002/bjs.10914. PMID: 30003539.
Article
115. Murphy R, Tsai P, Jüllig M, Liu A, Plank L, Booth M. 2017; Differential changes in gut microbiota after gastric bypass and sleeve gastrectomy bariatric surgery vary according to diabetes remission. Obes Surg. 27:917–925. DOI: 10.1007/s11695-016-2399-2. PMID: 27738970.
Article
Full Text Links
  • KJG
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr