3. Lee CG, Lee JK, Kang YS, et al. 2015; Visceral abdominal obesity is associated with an increased risk of irritable bowel syndrome. Am J Gastroenterol. 110:310–319. DOI:
10.1038/ajg.2014.422. PMID:
25583325.
Article
4. Agarwal A, Singh A, Mehtab W, et al. 2021; Patients with celiac disease are at high risk of developing metabolic syndrome and fatty liver. Intest Res. 19:106–114. DOI:
10.5217/ir.2019.00136. PMID:
32312034. PMCID:
PMC7873403.
Article
5. Friedenreich CM, Ryder-Burbidge C, McNeil J. 2021; Physical activity, obesity and sedentary behavior in cancer etiology: epidemiologic evidence and biologic mechanisms. Mol Oncol. 15:790–800. DOI:
10.1002/1878-0261.12772. PMID:
32741068. PMCID:
PMC7931121.
9. Chen Q, Wang J, Yang J, et al. 2015; Association between adult weight gain and colorectal cancer: a dose-response meta-analysis of observational studies. Int J Cancer. 136:2880–2889. DOI:
10.1002/ijc.29331. PMID:
25395274.
Article
12. Øines M, Helsingen LM, Bretthauer M, Emilsson L. 2017; Epidemiology and risk factors of colorectal polyps. Best Pract Res Clin Gastroenterol. 31:419–424. DOI:
10.1016/j.bpg.2017.06.004. PMID:
28842051.
Article
13. Schlesinger S, Aleksandrova K, Abar L, et al. 2017; Adult weight gain and colorectal adenomas-a systematic review and meta-analysis. Ann Oncol. 28:1217–1229. DOI:
10.1093/annonc/mdx080. PMID:
28327995.
Article
14. Anderson JC, Calderwood AH, Christensen BC, Robinson CM, Amos CI, Butterly L. 2018; Smoking and other risk factors in individuals with synchronous conventional high-risk adenomas and clinically significant serrated polyps. Am J Gastroenterol. 113:1828–1835. DOI:
10.1038/s41395-018-0393-0. PMID:
30385834. PMCID:
PMC6768665.
Article
15. Bailie L, Loughrey MB, Coleman HG. 2017; Lifestyle risk factors for serrated colorectal polyps: A systematic review and meta-analysis. Gastroenterology. 152:92–104. DOI:
10.1053/j.gastro.2016.09.003. PMID:
27639804.
Article
16. Wong MC, Chan CH, Cheung W, et al. 2018; Association between investigator-measured body-mass index and colorectal adenoma: a systematic review and meta-analysis of 168,201 subjects. Eur J Epidemiol. 33:15–26. DOI:
10.1007/s10654-017-0336-x. PMID:
29288474. PMCID:
PMC5803281.
17. Gathirua-Mwangi WG, Monahan P, Song Y, et al. 2017; Changes in adult BMI and waist circumference are associated with increased risk of advanced colorectal neoplasia. Dig Dis Sci. 62:3177–3185. DOI:
10.1007/s10620-017-4778-5. PMID:
28983748. PMCID:
PMC5653429.
Article
18. Lauby-Secretan B, Scoccianti C, Loomis D, Grosse Y, Bianchini F, Straif K. 2016; Body fatness and cancer--viewpoint of the IARC working group. N Engl J Med. 375:794–798. DOI:
10.1056/NEJMsr1606602. PMID:
27557308. PMCID:
PMC6754861.
Article
20. Abar L, Vieira AR, Aune D, et al. 2018; Height and body fatness and colorectal cancer risk: an update of the WCRF-AICR systematic review of published prospective studies. Eur J Nutr. 57:1701–1720. DOI:
10.1007/s00394-017-1557-1. PMID:
29080978. PMCID:
PMC6060816.
Article
22. O'Sullivan DE, Sutherland RL, Town S, et al. 2022; Risk factors for early-onset colorectal cancer: a systematic review and meta-analysis. Clin Gastroenterol Hepatol. 20:1229–1240.e5. DOI:
10.1016/j.cgh.2021.01.037. PMID:
33524598.
24. Mili N, Paschou SA, Goulis DG, Dimopoulos MA, Lambrinoudaki I, Psaltopoulou T. 2021; Obesity, metabolic syndrome, and cancer: pathophysiological and therapeutic associations. Endocrine. 74:478–497. DOI:
10.1007/s12020-021-02884-x. PMID:
34625915.
Article
25. Jin EH, Han K, Lee DH, et al. 2022; Association between metabolic syndrome and the risk of colorectal cancer diagnosed before age 50 years according to tumor location. Gastroenterology. 163:637–648.e2. DOI:
10.1053/j.gastro.2022.05.032. PMID:
35643169.
26. Lee J, Lee KS, Kim H, et al. 2020; The relationship between metabolic syndrome and the incidence of colorectal cancer. Environ Health Prev Med. 25:6. DOI:
10.1186/s12199-020-00845-w. PMID:
32075578. PMCID:
PMC7031951.
27. Chen H, Zheng X, Zong X, et al. 2021; Metabolic syndrome, metabolic comorbid conditions and risk of early-onset colorectal cancer. Gut. 70:1147–1154. DOI:
10.1136/gutjnl-2020-321661. PMID:
33037055. PMCID:
PMC8032822.
28. Xu P, Li J, Liu J, Wang J, Wu Z, Zhang X, Zhai Y. 2017; Mature adipocytes observed to undergo reproliferation and polyploidy. FEBS Open Bio. 7:652–658. DOI:
10.1002/2211-5463.12207. PMID:
28469978. PMCID:
PMC5407891.
29. Cirillo F, Catellani C, Sartori C, Lazzeroni P, Amarri S, Street ME. 2019; Obesity, insulin resistance, and colorectal cancer: could miRNA dysregulation play A role? Int J Mol Sci. 20:2922. DOI:
10.3390/ijms20122922. PMID:
31207998. PMCID:
PMC6628223.
Article
32. Chen YC, Chien CY, Hsu CC, et al. 2021; Obesity-associated leptin promotes chemoresistance in colorectal cancer through YAP-dependent AXL upregulation. Am J Cancer Res. 11:4220–4240.
34. Rasic I, Rebic V, Rasic A, Aksamija G, Radovic S. 2018; The association of simultaneous increase in interleukin-6, C reactive protein, and matrix metalloproteinase-9 serum levels with increasing stages of colorectal cancer. J Oncol. 2018:2830503. DOI:
10.1155/2018/2830503. PMID:
30154846. PMCID:
PMC6091449.
Article
35. Chávez-Talavera O, Tailleux A, Lefebvre P, Staels B. 2017; Bile acid control of metabolism and inflammation in obesity, type 2 diabetes, dyslipidemia, and nonalcoholic fatty liver disease. Gastroenterology. 152:1679–1694.e3. DOI:
10.1053/j.gastro.2017.01.055. PMID:
28214524.
Article
36. La Frano MR, Hernandez-Carretero A, Weber N, et al. 2017; Diet-induced obesity and weight loss alter bile acid concentrations and bile acid-sensitive gene expression in insulin target tissues of C57BL/6J mice. Nutr Res. 46:11–21. DOI:
10.1016/j.nutres.2017.07.006. PMID:
29173647.
Article
37. Lin H, An Y, Tang H, Wang Y. 2019; Alterations of bile acids and gut microbiota in obesity induced by high fat diet in rat model. J Agric Food Chem. 67:3624–3632. DOI:
10.1021/acs.jafc.9b00249. PMID:
30832480.
Article
38. Centuori SM, Gomes CJ, Trujillo J, et al. 2016; Deoxycholic acid mediates non-canonical EGFR-MAPK activation through the induction of calcium signaling in colon cancer cells. Biochim Biophys Acta. 1861:663–670. DOI:
10.1016/j.bbalip.2016.04.006. PMID:
27086143. PMCID:
PMC4900466.
Article
43. Chen J, Katsifis A, Hu C, Huang XF. 2011; Insulin decreases therapeutic efficacy in colon cancer cell line HT29 via the activation of the PI3K/Akt pathway. Curr Drug Discov Technol. 8:119–125. DOI:
10.2174/157016311795563820. PMID:
21513489.
Article
44. Stefani C, Miricescu D, Stanescu-Spinu II, et al. 2021; Growth factors, PI3K/AKT/mTOR and MAPK signaling pathways in colorectal cancer pathogenesis: Where are we now? Int J Mol Sci. 22:10260. DOI:
10.3390/ijms221910260. PMID:
34638601. PMCID:
PMC8508474.
Article
46. Narayanankutty A. 2019; PI3K/Akt/mTOR pathway as a therapeutic target for colorectal cancer: A review of preclinical and clinical evidence. Curr Drug Targets. 20:1217–1226. DOI:
10.2174/1389450120666190618123846. PMID:
31215384.
Article
47. Wang L, Li S, Luo H, Lu Q, Yu S. 2022; PCSK9 promotes the progression and metastasis of colon cancer cells through regulation of EMT and PI3K/AKT signaling in tumor cells and phenotypic polarization of macrophages. J Exp Clin Cancer Res. 41:303. DOI:
10.1186/s13046-022-02477-0. PMID:
36242053. PMCID:
PMC9563506.
Article
49. Chen J, Elfiky A, Han M, Chen C, Saif MW. 2014; The role of Src in colon cancer and its therapeutic implications. Clin Colorectal Cancer. 13:5–13. DOI:
10.1016/j.clcc.2013.10.003. PMID:
24361441.
Article
51. Sekharam M, Nasir A, Kaiser HE, Coppola D. 2003; Insulin-like growth factor 1 receptor activates c-SRC and modifies transformation and motility of colon cancer in vitro. Anticancer Res. 23:1517–1524.
53. Aleksandrova K, Schlesinger S, Fedirko V, et al. 2017; Metabolic mediators of the association between adult weight gain and colorectal cancer: Data from the european prospective investigation into cancer and nutrition (EPIC) cohort. Am J Epidemiol. 185:751–764. DOI:
10.1093/aje/kww194. PMID:
28387787. PMCID:
PMC5860400.
Article
54. Endo H, Hosono K, Uchiyama T, et al. 2011; Leptin acts as a growth factor for colorectal tumours at stages subsequent to tumour initiation in murine colon carcinogenesis. Gut. 60:1363–1371. DOI:
10.1136/gut.2010.235754. PMID:
21406387.
Article
55. Nigro E, Scudiero O, Monaco ML, et al. 2014; New insight into adiponectin role in obesity and obesity-related diseases. Biomed Res Int. 2014:658913. DOI:
10.1155/2014/658913. PMID:
25110685. PMCID:
PMC4109424.
Article
56. Duraiyarasan S, Adefuye M, Manjunatha N, Ganduri V, Rajasekaran K. 2022; Colon cancer and obesity: A narrative review. Cureus. 14:e27589. DOI:
10.7759/cureus.27589.
Article
57. Sugiyama M, Takahashi H, Hosono K, et al. 2009; Adiponectin inhibits colorectal cancer cell growth through the AMPK/mTOR pathway. Int J Oncol. 34:339–344.
Article
59. Wei EK, Giovannucci E, Fuchs CS, Willett WC, Mantzoros CS. 2005; Low plasma adiponectin levels and risk of colorectal cancer in men: a prospective study. J Natl Cancer Inst. 97:1688–1694. DOI:
10.1093/jnci/dji376. PMID:
16288122.
Article
62. Fontana L, Eagon JC, Trujillo ME, Scherer PE, Klein S. 2007; Visceral fat adipokine secretion is associated with systemic inflammation in obese humans. Diabetes. 56:1010–1013. DOI:
10.2337/db06-1656. PMID:
17287468.
Article
63. Nagasaki T, Hara M, Nakanishi H, Takahashi H, Sato M, Takeyama H. 2014; Interleukin-6 released by colon cancer-associated fibroblasts is critical for tumour angiogenesis: anti-interleukin-6 receptor antibody suppressed angiogenesis and inhibited tumour-stroma interaction. Br J Cancer. 110:469–478. DOI:
10.1038/bjc.2013.748. PMID:
24346288. PMCID:
PMC3899773.
Article
64. Rodrigues KF, Pietrani NT, Bosco AA, Campos FMF, Sandrim VC, Gomes KB. 2017; IL-6, TNF-α, and IL-10 levels/polymorphisms and their association with type 2 diabetes mellitus and obesity in Brazilian individuals. Arch Endocrinol Metab. 61:438–446. DOI:
10.1590/2359-3997000000254. PMID:
28225860.
Article
65. Wei X, Li X, Kong F, et al. 2018; [TNF-α activates Wnt signaling pathway to promote the invasion of human colon cancer stem cells]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 34:982–988. Chinese.
66. Kern L, Mittenbühler MJ, Vesting AJ, et al. 2018; Obesity-induced TNFα and IL-6 signaling: The missing link between obesity and inflammation-driven liver and colorectal cancers. Cancers (Basel). 11:24. DOI:
10.3390/cancers11010024. PMID:
30591653. PMCID:
PMC6356226.
Article
68. Pikarsky E, Porat RM, Stein I, et al. 2004; NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature. 431:461–466. DOI:
10.1038/nature02924. PMID:
15329734.
Article
69. Kwaifa IK, Bahari H, Yong YK, Noor SM. 2020; Endothelial dysfunction in obesity-induced inflammation: Molecular mechanisms and clinical implications. Biomolecules. 10:291. DOI:
10.3390/biom10020291. PMID:
32069832. PMCID:
PMC7072669.
Article
71. Molnár I. 2020; Interactions among thyroid hormone (FT4), chemokine (MCP-1) and neurotrophin (NGF-β) levels studied in Hungarian postmenopausal and obese women. Cytokine. 127:154948. DOI:
10.1016/j.cyto.2019.154948. PMID:
31901598.
Article
72. Wang H, Tian T, Zhang J. 2021; Tumor-associated macrophages (TAMs) in colorectal cancer (CRC): From mechanism to therapy and prognosis. Int J Mol Sci. 22:8470. DOI:
10.3390/ijms22168470. PMID:
34445193. PMCID:
PMC8395168.
Article
73. McClellan JL, Davis JM, Steiner JL, et al. 2012; Linking tumor-associated macrophages, inflammation, and intestinal tumorigenesis: role of MCP-1. Am J Physiol Gastrointest Liver Physiol. 303:G1087–G1095. DOI:
10.1152/ajpgi.00252.2012. PMID:
23019193. PMCID:
PMC3517651.
Article
74. Nieman KM, Kenny HA, Penicka CV, et al. 2011; Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat Med. 17:1498–1503. DOI:
10.1038/nm.2492. PMID:
22037646. PMCID:
PMC4157349.
Article
75. Martin-Padura I, Gregato G, Marighetti P, et al. 2012; The white adipose tissue used in lipotransfer procedures is a rich reservoir of CD34+ progenitors able to promote cancer progression. Cancer Res. 72:325–334. DOI:
10.1158/0008-5472.CAN-11-1739. PMID:
22052460.
Article
77. Xiao L, Wang J, Li J, et al. 2015; RORα inhibits adipocyte-conditioned medium-induced colorectal cancer cell proliferation and migration and chick embryo chorioallantoic membrane angiopoiesis. Am J Physiol Cell Physiol. 308:C385–C396. DOI:
10.1152/ajpcell.00091.2014. PMID:
25500738.
Article
78. Amemori S, Ootani A, Aoki S, et al. 2007; Adipocytes and preadipocytes promote the proliferation of colon cancer cells in vitro. Am J Physiol Gastrointest Liver Physiol. 292:G923–G929. DOI:
10.1152/ajpgi.00145.2006. PMID:
17170030.
Article
80. Murphy N, Moreno V, Hughes DJ, et al. 2019; Lifestyle and dietary environmental factors in colorectal cancer susceptibility. Mol Aspects Med. 69:2–9. DOI:
10.1016/j.mam.2019.06.005. PMID:
31233770.
Article
81. Vergara-Castañeda HA, Guevara-González RG, Ramos-Gómez M, et al. 2010; Non-digestible fraction of cooked bean (Phaseolus vulgaris L.) cultivar Bayo Madero suppresses colonic aberrant crypt foci in azoxymethane-induced rats. Food Funct. 1:294–300. DOI:
10.1039/c0fo00130a. PMID:
21776479.
Article
82. Reddy BS, Hirose Y, Cohen LA, Simi B, Cooma I, Rao CV. 2000; Preventive potential of wheat bran fractions against experimental colon carcinogenesis: implications for human colon cancer prevention. Cancer Res. 60:4792–4797.
83. Aune D, Chan DS, Lau R, et al. 2011; Dietary fibre, whole grains, and risk of colorectal cancer: systematic review and dose-response meta-analysis of prospective studies. BMJ. 343:d6617. DOI:
10.1136/bmj.d6617. PMID:
22074852. PMCID:
PMC3213242.
Article
84. Ben Q, Sun Y, Chai R, Qian A, Xu B, Yuan Y. 2014; Dietary fiber intake reduces risk for colorectal adenoma: a meta-analysis. Gastroenterology. 146:689–699.e6. DOI:
10.1053/j.gastro.2013.11.003. PMID:
24216326.
Article
85. Zhang S, Jia Z, Yan Z, Yang J. 2017; Consumption of fruits and vegetables and risk of renal cell carcinoma: a meta-analysis of observational studies. Oncotarget. 8:27892–27903. DOI:
10.18632/oncotarget.15841. PMID:
28427188. PMCID:
PMC5438616.
Article
86. Aune D, Lau R, Chan DS, et al. 2011; Nonlinear reduction in risk for colorectal cancer by fruit and vegetable intake based on meta-analysis of prospective studies. Gastroenterology. 141:106–118. DOI:
10.1053/j.gastro.2011.04.013. PMID:
21600207.
Article
87. Asghar M, George L, Lokhandwala MF. 2007; Exercise decreases oxidative stress and inflammation and restores renal dopamine D1 receptor function in old rats. Am J Physiol Renal Physiol. 293:F914–F919. DOI:
10.1152/ajprenal.00272.2007. PMID:
17634393.
Article
88. Cirillo D, Rachiglio AM, la Montagna R, Giordano A, Normanno N. 2008; Leptin signaling in breast cancer: an overview. J Cell Biochem. 105:956–964. DOI:
10.1002/jcb.21911. PMID:
18821585.
Article
89. Ju J, Nolan B, Cheh M, et al. 2008; Voluntary exercise inhibits intestinal tumorigenesis in Apc(Min/+) mice and azoxymethane/dextran sulfate sodium-treated mice. BMC Cancer. 8:316. DOI:
10.1186/1471-2407-8-316. PMID:
18976499. PMCID:
PMC2635383.
90. Rezende LFM, Sá TH, Markozannes G, et al. 2018; Physical activity and cancer: an umbrella review of the literature including 22 major anatomical sites and 770000 cancer cases. Br J Sports Med. 52:826–833. DOI:
10.1136/bjsports-2017-098391. PMID:
29146752.
Article
94. Zhou Y, Wu L, Li X, Wu X, Li B. 2012; Outcome of laparoscopic colorectal surgery in obese and nonobese patients: a meta-analysis. Surg Endosc. 26:783–789. DOI:
10.1007/s00464-011-1952-2. PMID:
22011944.
Article
95. Makino T, Shukla PJ, Rubino F, Milsom JW. 2012; The impact of obesity on perioperative outcomes after laparoscopic colorectal resection. Ann Surg. 255:228–236. DOI:
10.1097/SLA.0b013e31823dcbf7. PMID:
22190113.
Article
97. Almasaudi AS, McSorley ST, Edwards CA, McMillan DC. 2018; The relationship between body mass index and short term postoperative outcomes in patients undergoing potentially curative surgery for colorectal cancer: A systematic review and meta-analysis. Crit Rev Oncol Hematol. 121:68–73. DOI:
10.1016/j.critrevonc.2017.12.004. PMID:
29279101.
Article
98. Fung A, Trabulsi N, Morris M, et al. 2017; Laparoscopic colorectal cancer resections in the obese: a systematic review. Surg Endosc. 31:2072–2088. DOI:
10.1007/s00464-016-5209-y. PMID:
27778169.
Article
99. Himbert C, Ose J, Nattenmüller J, et al. 2019; Body fatness, adipose tissue compartments, and biomarkers of inflammation and angiogenesis in colorectal cancer: The ColoCare study. Cancer Epidemiol Biomarkers Prev. 28:76–82. DOI:
10.1158/1055-9965.EPI-18-0654. PMID:
30333223. PMCID:
PMC6324954.
Article
100. Guiu B, Petit JM, Bonnetain F, et al. 2010; Visceral fat area is an independent predictive biomarker of outcome after first-line bevacizumab-based treatment in metastatic colorectal cancer. Gut. 59:341–347. DOI:
10.1136/gut.2009.188946. PMID:
19837679.
Article
101. Artaç M, Korkmaz L, Coşkun HŞ, et al. 2019; Bevacuzimab may be less effective in obese metastatic colorectal cancer patients. J Gastrointest Cancer. 50:214–220. DOI:
10.1007/s12029-017-0047-2. PMID:
29302856.
Article
102. Miyamoto Y, Oki E, Emi Y, et al. 2018; Low visceral fat content is a negative predictive marker for bevacizumab in metastatic colorectal cancer. Anticancer Res. 38:491–499. DOI:
10.21873/anticanres.12249.
103. Cybulska-Stopa B, Ługowska I, Wiśniowski R, et al. 2020; Overweight is associated with better prognosis in metastatic colorectal cancer patients treated with bevacizumab plus FOLFOX chemotherapy. Contemp Oncol (Pozn). 24:34–41. DOI:
10.5114/wo.2020.94728. PMID:
32514236. PMCID:
PMC7265962.
105. Lee J, Meyerhardt JA, Giovannucci E, Jeon JY. 2015; Association between body mass index and prognosis of colorectal cancer: a meta-analysis of prospective cohort studies. PLoS One. 10:e0120706. DOI:
10.1371/journal.pone.0120706. PMID:
25811460. PMCID:
PMC4374868.
106. Jaspan V, Lin K, Popov V. 2021; The impact of anthropometric parameters on colorectal cancer prognosis: A systematic review and meta-analysis. Crit Rev Oncol Hematol. 159:103232. DOI:
10.1016/j.critrevonc.2021.103232. PMID:
33497759.
107. Griggs JJ, Bohlke K, Balaban EP, et al. 2021; Appropriate systemic therapy dosing for obese adult patients with cancer: ASCO guideline update. J Clin Oncol. 39:2037–2048. DOI:
10.1200/JCO.21.00471. PMID:
33939491.
Article
108. Hourdequin KC, Schpero WL, McKenna DR, Piazik BL, Larson RJ. 2013; Toxic effect of chemotherapy dosing using actual body weight in obese versus normal-weight patients: a systematic review and meta-analysis. Ann Oncol. 24:2952–2962. DOI:
10.1093/annonc/mdt294. PMID:
23965736.
Article
109. Stocker G, Hacker UT, Fiteni F, et al. 2018; Clinical consequences of chemotherapy dose reduction in obese patients with stage III colon cancer: A retrospective analysis from the PETACC 3 study. Eur J Cancer. 99:49–57. DOI:
10.1016/j.ejca.2018.05.004. PMID:
29906734.
Article
110. Christakoudi S, Pagoni P, Ferrari P, et al. 2021; Weight change in middle adulthood and risk of cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. Int J Cancer. 148:1637–1651. DOI:
10.1002/ijc.33339. PMID:
33038275.
Article
112. Khalid SI, Maasarani S, Wiegmann J, et al. 2022; Association of bariatric surgery and risk of cancer in patients with morbid obesity. Ann Surg. 275:1–6. DOI:
10.1097/SLA.0000000000005035. PMID:
34183506.
Article
113. Taube M, Peltonen M, Sjöholm K, et al. 2021; Long-term incidence of colorectal cancer after bariatric surgery or usual care in the Swedish Obese Subjects study. PLoS One. 16:e0248550. DOI:
10.1371/journal.pone.0248550. PMID:
33764991. PMCID:
PMC7993847.
Article
114. Mackenzie H, Markar SR, Askari A, et al. 2018; Obesity surgery and risk of cancer. Br J Surg. 105:1650–1657. DOI:
10.1002/bjs.10914. PMID:
30003539.
Article
115. Murphy R, Tsai P, Jüllig M, Liu A, Plank L, Booth M. 2017; Differential changes in gut microbiota after gastric bypass and sleeve gastrectomy bariatric surgery vary according to diabetes remission. Obes Surg. 27:917–925. DOI:
10.1007/s11695-016-2399-2. PMID:
27738970.
Article