Int J Stem Cells.  2023 Aug;16(3):251-259. 10.15283/ijsc22211.

Applications of Bioinspired Platforms for Enhancing Immunomodulatory Function of Mesenchymal Stromal Cells

Affiliations
  • 1Department of Anatomy and Cell Biology, College of Medicine, Chung-Ang University, Seoul, Korea
  • 2Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Korea
  • 3Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Korea

Abstract

Mesenchymal stromal cells (MSCs) have attracted scientific and medical interest due to their self-renewing properties, pluripotency, and paracrine function. However, one of the main limitations to the clinical application of MSCs is their loss of efficacy after transplantation in vivo. Various bioengineering technologies to provide stem cell niche-like conditions have the potential to overcome this limitation. Here, focusing on the stem cell niche microenvironment, studies to maximize the immunomodulatory potential of MSCs by controlling biomechanical stimuli, including shear stress, hydrostatic pressure, stretch, and biophysical cues, such as extracellular matrix mimetic substrates, are discussed. The application of biomechanical forces or biophysical cues to the stem cell microenvironment will be beneficial for enhancing the immunomodulatory function of MSCs during cultivation and overcoming the current limitations of MSC therapy.

Keyword

Mesenchymal stromal cells (MSCs); Immunomodulation; Biomechanical forces; Biophysical cues

Figure

  • Fig. 1 Biomechanical forces in the MSC niche. Different types of biomechanical forces existing in the MSC niche are shown. (A) As blood vessels generate pulsatile flow, shear stress as a frictional force, hydrostatic pressure, and tensile force can be applied to the cells in the blood vessels or nearby. (B) Mechanose-nsors translate the biomechanical stimuli into biochemical signals inside cells.

  • Fig. 2 Biophysical cues in the MSC microenvironment for enhancing immunomodulatory function. The application of a cell culture platform that mimics the microenvironment of the MSC niche, such as spheroid formation, scaffold, stiffness, and functionalization of the substrate surface, plays an important role in strengthening cellular immunomodulation function by secreting various immuno-modulatory cytokines (IDO-1, PGE2, HO-1, COX-2, TSG-6).


Reference

References

1. Reinisch A, Etchart N, Thomas D, Hofmann NA, Fruehwirth M, Sinha S, Chan CK, Senarath-Yapa K, Seo EY, Wearda T, Hartwig UF, Beham-Schmid C, Trajanoski S, Lin Q, Wagner W, Dullin C, Alves F, Andreeff M, Weissman IL, Longaker MT, Schallmoser K, Majeti R, Strunk D. 2015; Epigenetic and in vivo comparison of diverse MSC sources reveals an endochondral signature for human hematopoietic niche formation. Blood. 125:249–260. DOI: 10.1182/blood-2014-04-572255. PMID: 25406351. PMCID: PMC4287636.
Article
2. Lee S, Kim HS, Min BH, Kim BG, Kim SA, Nam H, Lee M, Kim M, Hwang HY, Leesong AI, Leesong MM, Kim JH, Shin JS. 2021; Enhancement of anti-inflammatory and immunomodulatory effects of adipose-derived human mesenchymal stem cells by making uniform spheroid on the new nano-patterned plates. Biochem Biophys Res Commun. 552:164–169. DOI: 10.1016/j.bbrc.2021.03.026. PMID: 33751933.
Article
3. Chen Y, Shu Z, Qian K, Wang J, Zhu H. 2019; Harnessing the properties of biomaterial to enhance the immunomodulation of mesenchymal stem cells. Tissue Eng Part B Rev. 25:492–499. DOI: 10.1089/ten.teb.2019.0131. PMID: 31436142.
Article
4. Gan L, Liu Y, Cui D, Pan Y, Zheng L, Wan M. 2020; Dental tissue-derived human mesenchymal stem cells and their potential in therapeutic application. Stem Cells Int. 2020:8864572. DOI: 10.1155/2020/8864572. PMID: 32952572. PMCID: PMC7482010. PMID: 8fde75d30d1248c98bc89a629e2a2622.
Article
5. Schofield R. 1978; The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells. 4:7–25.
6. Kolf CM, Cho E, Tuan RS. 2007; Mesenchymal stromal cells. Biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation. Arthritis Res Ther. 9:204. DOI: 10.1186/ar2116. PMID: 17316462. PMCID: PMC1860068.
7. Pittenger MF, Discher DE, Péault BM, Phinney DG, Hare JM, Caplan AI. 2019; Mesenchymal stem cell perspective: cell biology to clinical progress. NPJ Regen Med. 4:22. DOI: 10.1038/s41536-019-0083-6. PMID: 31815001. PMCID: PMC6889290.
Article
8. Hazrati A, Malekpour K, Soudi S, Hashemi SM. 2022; Mesenchymal stromal/stem cells spheroid culture effect on the therapeutic efficacy of these cells and their exosomes: a new strategy to overcome cell therapy limitations. Biomed Phar-macother. 152:113211. DOI: 10.1016/j.biopha.2022.113211. PMID: 35696942.
Article
9. Diaz MF, Vaidya AB, Evans SM, Lee HJ, Aertker BM, Alexander AJ, Price KM, Ozuna JA, Liao GP, Aroom KR, Xue H, Gu L, Omichi R, Bedi S, Olson SD, Cox CS Jr, Wenzel PL. 2017; Biomechanical forces promote immune regulatory function of bone marrow mesenchymal stromal cells. Stem Cells. 35:1259–1272. DOI: 10.1002/stem.2587. PMID: 28181347. PMCID: PMC5405000.
Article
10. Chiu JJ, Chien S. 2011; Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol Rev. 91:327–387. DOI: 10.1152/physrev.00047.2009. PMID: 21248169. PMCID: PMC3844671.
Article
11. Zhang Y, Yu J, Bomba HN, Zhu Y, Gu Z. 2016; Mechanical force-triggered drug delivery. Chem Rev. 116:12536–12563. DOI: 10.1021/acs.chemrev.6b00369. PMID: 27680291.
Article
12. Kim TJ, Joo C, Seong J, Vafabakhsh R, Botvinick EL, Berns MW, Palmer AE, Wang N, Ha T, Jakobsson E, Sun J, Wang Y. 2015; Distinct mechanisms regulating mechanical force-induced Ca²⁺ signals at the plasma membrane and the ER in human MSCs. Elife. 4:e04876. DOI: 10.7554/eLife.04876. PMID: 25667984. PMCID: PMC4337650. PMID: 414e53f260df4d20812b6dbf45a7bdbf.
Article
13. Sun Y, Chen CS, Fu J. 2012; Forcing stem cells to behave: a biophysical perspective of the cellular microenvironment. Annu Rev Biophys. 41:519–542. DOI: 10.1146/annurev-biophys-042910-155306. PMID: 22404680. PMCID: PMC4123632.
Article
14. Kornuta JA, Nepiyushchikh Z, Gasheva OY, Mukherjee A, Zawieja DC, Dixon JB. 2015; Effects of dynamic shear and transmural pressure on wall shear stress sensitivity in collecting lymphatic vessels. Am J Physiol Regul Integr Comp Physiol. 309:R1122–R1134. DOI: 10.1152/ajpregu.00342.2014. PMID: 26333787. PMCID: PMC4666954.
Article
15. English K. 2013; Mechanisms of mesenchymal stromal cell im-munomodulation. Immunol Cell Biol. 91:19–26. DOI: 10.1038/icb.2012.56. PMID: 23090487.
Article
16. Lee HJ, Diaz MF, Ewere A, Olson SD, Cox CS Jr, Wenzel PL. 2017; Focal adhesion kinase signaling regulates anti-inflam-matory function of bone marrow mesenchymal stromal cells induced by biomechanical force. Cell Signal. 38:1–9. DOI: 10.1016/j.cellsig.2017.06.012. PMID: 28647573. PMCID: PMC5548629.
Article
17. Santos JM, Camões SP, Filipe E, Cipriano M, Barcia RN, Filipe M, Teixeira M, Simões S, Gaspar M, Mosqueira D, Nascimento DS, Pinto-do-Ó P, Cruz P, Cruz H, Castro M, Miranda JP. 2015; Three-dimensional spheroid cell culture of umbilical cord tissue-derived mesenchymal stromal cells leads to enhanced paracrine induction of wound healing. Stem Cell Res Ther. 6:90. DOI: 10.1186/s13287-015-0082-5. PMID: 25956381. PMCID: PMC4448539.
Article
18. Mizukami A, Fernandes-Platzgummer A, Carmelo JG, Swiech K, Covas DT, Cabral JM, da Silva CL. 2016; Stirred tank bioreactor culture combined with serum-/xenogeneic-free culture medium enables an efficient expansion of umbilical cord-derived mesenchymal stem/stromal cells. Biotechnol J. 11:1048–1059. DOI: 10.1002/biot.201500532. PMID: 27168373.
Article
19. Seifert M, Lubitz A, Trommer J, Könnig D, Korus G, Marx U, Volk HD, Duda G, Kasper G, Lehmann K, Stolk M, Giese C. 2012; Crosstalk between immune cells and mesenchymal stromal cells in a 3D bioreactor system. Int J Artif Organs. 35:986–995. DOI: 10.1177/039139881203501104. PMID: 23065892.
Article
20. Charras G, Yap AS. 2018; Tensile forces and mechanotransduction at cell-cell junctions. Curr Biol. 28:R445–R457. DOI: 10.1016/j.cub.2018.02.003. PMID: 29689229.
Article
21. Camasão DB, Mantovani D. 2021; The mechanical characterization of blood vessels and their substitutes in the continuous quest for physiological-relevant performances. A critical review. Mater Today Bio. 10:100106. DOI: 10.1016/j.mtbio.2021.100106. PMID: 33889837. PMCID: PMC8050780.
Article
22. Castillo AB, Jacobs CR. 2010; Mesenchymal stem cell mechano-biology. Curr Osteoporos Rep. 8:98–104. DOI: 10.1007/s11914-010-0015-2. PMID: 20425617.
Article
23. Falcones B, Söderlund Z, Ibáñez-Fonseca A, Almendros I, Otero J, Farré R, Rolandsson Enes S, Elowsson Rendin L, Westergren-Thorsson G. 2022; hLMSC secretome affects macrophage activity differentially depending on lung-mimetic environments. Cells. 11:1866. DOI: 10.3390/cells11121866. PMID: 35740995. PMCID: PMC9221297. PMID: 0b3b2ddf9ca04128b2c946385a39c7a8.
Article
24. Sumanasinghe RD, Pfeiler TW, Monteiro-Riviere NA, Loboa EG. 2009; Expression of proinflammatory cytokines by human mesenchymal stem cells in response to cyclic tensile strain. J Cell Physiol. 219:77–83. DOI: 10.1002/jcp.21653. PMID: 19089992.
Article
25. Yang M, Xiao LW, Liao EY, Wang QJ, Wang BB, Lei JX. 2014; The role of integrin-β/FAK in cyclic mechanical stimulation in MG-63 cells. Int J Clin Exp Pathol. 7:7451–7459. PMID: 25550780. PMCID: PMC4270589.
26. Wu Y, van der Schaft DWJ, Baaijens FP, Oomens CWJ. 2016; Cell death induced by mechanical compression on engineered muscle results from a gradual physiological me-chanism. J Biomech. 49:1071–1077. DOI: 10.1016/j.jbiomech.2016.02.028. PMID: 26961799.
Article
27. Stover J, Nagatomi J. 2007; Cyclic pressure stimulates DNA synthesis through the PI3K/Akt signaling pathway in rat bladder smooth muscle cells. Ann Biomed Eng. 35:1585–1594. DOI: 10.1007/s10439-007-9331-9. PMID: 17522977.
Article
28. Zimmerman AM, Marsland D. 1964; Cell division: effects of pressure on the mitotic mechanisms of marine eggs (Arbacia punctulata). Exp Cell Res. 35:293–302. DOI: 10.1016/0014-4827(64)90096-5. PMID: 14195437.
29. Park J, Jia S, Salter D, Bagnaninchi P, Hansen CG. 2022; The Hippo pathway drives the cellular response to hydrostatic pressure. EMBO J. 41:e108719. DOI: 10.15252/embj.2021108719. PMID: 35702882. PMCID: PMC9251841.
Article
30. Sugimoto A, Miyazaki A, Kawarabayashi K, Shono M, Akazawa Y, Hasegawa T, Ueda-Yamaguchi K, Kitamura T, Yoshizaki K, Fukumoto S, Iwamoto T. 2017; Piezo type mechanosensitive ion channel component 1 functions as a regulator of the cell fate determination of mesenchymal stem cells. Sci Rep. 7:17696. DOI: 10.1038/s41598-017-18089-0. PMID: 29255201. PMCID: PMC5735093.
Article
31. Stavenschi E, Corrigan MA, Johnson GP, Riffault M, Hoey DA. 2018; Physiological cyclic hydrostatic pressure induces osteogenic lineage commitment of human bone marrow stem cells: a systematic study. Stem Cell Res Ther. 9:276. DOI: 10.1186/s13287-018-1025-8. PMID: 30359324. PMCID: PMC6203194. PMID: a9bbcc077bc04bb4beadd137fe421227.
Article
32. Yu W, Chen C, Kou X, Sui B, Yu T, Liu D, Wang R, Wang J, Shi S. 2021; Mechanical force-driven TNFα endocytosis governs stem cell homeostasis. Bone Res. 8:44. DOI: 10.1038/s41413-020-00117-x. PMID: 33384406. PMCID: PMC7775432. PMID: 0488af97fba6414db3633f079184723c.
Article
33. Ghaemi SR, Harding FJ, Delalat B, Gronthos S, Voelcker NH. 2013; Exploring the mesenchymal stem cell niche using high throughput screening. Biomaterials. 34:7601–7615. DOI: 10.1016/j.biomaterials.2013.06.022. PMID: 23871539.
Article
34. Novoseletskaya E, Grigorieva O, Nimiritsky P, Basalova N, Eremichev R, Milovskaya I, Kulebyakin K, Kulebyakina M, Rodionov S, Omelyanenko N, Efimenko A. 2020; Mesenchymal stromal cell-produced components of extracellular matrix potentiate multipotent stem cell response to differentiation stimuli. Front Cell Dev Biol. 8:555378. DOI: 10.3389/fcell.2020.555378. PMID: 33072743. PMCID: PMC7536557. PMID: 1a8f341987074ed687d93a8a2f955750.
Article
35. Bartosh TJ, Ylöstalo JH, Mohammadipoor A, Bazhanov N, Coble K, Claypool K, Lee RH, Choi H, Prockop DJ. 2010; Aggregation of human mesenchymal stromal cells (MSCs) into 3D spheroids enhances their antiinflammatory properties. Proc Natl Acad Sci U S A. 107:13724–13729. DOI: 10.1073/pnas.1008117107. PMID: 20643923. PMCID: PMC2922230.
Article
36. Xie L, Mao M, Zhou L, Zhang L, Jiang B. 2017; Signal factors secreted by 2D and spheroid mesenchymal stem cells and by cocultures of mesenchymal stem cells derived microvesicles and retinal photoreceptor neurons. Stem Cells Int. 2017:2730472. DOI: 10.1155/2017/2730472. PMID: 28194184. PMCID: PMC5286488. PMID: 785d16b7a25a465bb192f4a469017d89.
Article
37. Ylostalo JH, Bazhanov N, Mohammadipoor A, Bartosh TJ. 2017; Production and administration of therapeutic mesenchymal stem/stromal cell (MSC) spheroids primed in 3-D cultures under xeno-free conditions. J Vis Exp. (121):55126. DOI: 10.3791/55126. PMID: 28362380. PMCID: PMC5409342.
Article
38. Camões SP, Bulut O, Yazar V, Gaspar MM, Simões S, Ferreira R, Vitorino R, Santos JM, Gursel I, Miranda JP. 2022; 3D-MSCs A151 ODN-loaded exosomes are immunomo-dulatory and reveal a proteomic cargo that sustains wound resolution. J Adv Res. 41:113–128. DOI: 10.1016/j.jare.2022.01.013. PMID: 36328741. PMCID: PMC9637564.
Article
39. von der Mark K, Park J, Bauer S, Schmuki P. 2010; Nanoscale engineering of biomimetic surfaces: cues from the extracellular matrix. Cell Tissue Res. 339:131–153. DOI: 10.1007/s00441-009-0896-5. PMID: 19898872.
Article
40. Li Y, Wu Q, Wang Y, Li L, Chen F, Shi Y, Bu H, Bao J. 2017; Immunogenicity of hepatic differentiated human umbilical cord mesenchymal stem cells promoted by porcine decellularized liver scaffolds. Xenotransplantation. 24:e12287. DOI: 10.1111/xen.12287. PMID: 28102609.
Article
41. Mk MV, Krishna B, Sampath S. 2019; Secular trends in an Indian intensive care unit-database derived epidemiology: the stride study. Indian J Crit Care Med. 23:251–257. DOI: 10.5005/jp-journals-10071-23175. PMID: 31435142. PMCID: PMC6698356.
Article
42. Kim OH, Park JH, Son JI, Yoon OJ, Lee HJ. 2021; Bone marrow mesenchymal stromal cells on silk fibroin scaffolds to attenuate polymicrobial sepsis induced by cecal ligation and puncture. Polymers (Basel). 13:1433. DOI: 10.3390/polym13091433. PMID: 33946773. PMCID: PMC8125697. PMID: e7bd81fc24154fc7a67a9935820de0e8.
Article
43. Kim OH, Yoon OJ, Lee HJ. 2019; Silk fibroin scaffolds potentiate immunomodulatory function of human mesenchymal stromal cells. Biochem Biophys Res Commun. 519:323–329. DOI: 10.1016/j.bbrc.2019.09.006. PMID: 31506179.
Article
44. Dong L, Li L, Song Y, Fang Y, Liu J, Chen P, Wang S, Wang C, Xia T, Liu W, Yang L. 2021; MSC-derived immuno-modulatory extracellular matrix functionalized electrospun fibers for mitigating foreign-body reaction and tendon adhesion. Acta Biomater. 133:280–296. DOI: 10.1016/j.actbio.2021.04.035. PMID: 33894349.
Article
45. Su N, Gao PL, Wang K, Wang JY, Zhong Y, Luo Y. 2017; Fibrous scaffolds potentiate the paracrine function of mesenchymal stem cells: a new dimension in cell-material inte-raction. Biomaterials. 141:74–85. DOI: 10.1016/j.biomaterials.2017.06.028. PMID: 28667901.
Article
46. Vallés G, Bensiamar F, Crespo L, Arruebo M, Vilaboa N, Saldaña L. 2015; Topographical cues regulate the crosstalk between MSCs and macrophages. Biomaterials. 37:124–133. DOI: 10.1016/j.biomaterials.2014.10.028. PMID: 25453943. PMCID: PMC4245715.
Article
47. Wan S, Fu X, Ji Y, Li M, Shi X, Wang Y. 2018; FAK- and YAP/TAZ dependent mechanotransduction pathways are required for enhanced immunomodulatory properties of adipose-derived mesenchymal stem cells induced by aligned fibrous scaffolds. Biomaterials. 171:107–117. DOI: 10.1016/j.biomaterials.2018.04.035. PMID: 29684675.
Article
48. Li J, Chen T, Huang X, Zhao Y, Wang B, Yin Y, Cui Y, Zhao Y, Zhang R, Wang X, Wang Y, Dai J. 2018; Substrate-independent immunomodulatory characteristics of mesenchymal stem cells in three-dimensional culture. PLoS One. 13:e0206811. DOI: 10.1371/journal.pone.0206811. PMID: 30408051. PMCID: PMC6224081. PMID: 0cdfc4e0c25a491ba82902a29b3cb432.
Article
49. Wong SW, Lenzini S, Cooper MH, Mooney DJ, Shin JW. 2020; Soft extracellular matrix enhances inflammatory activation of mesenchymal stromal cells to induce monocyte production and trafficking. Sci Adv. 6:eaaw0158. DOI: 10.1126/sciadv.aaw0158. PMID: 32284989. PMCID: PMC7141831.
Article
50. Darnell M, Gu L, Mooney D. 2018; RNA-seq reveals diverse effects of substrate stiffness on mesenchymal stem cells. Biomaterials. 181:182–188. DOI: 10.1016/j.biomaterials.2018.07.039. PMID: 30086447. PMCID: PMC6258186.
Article
51. Murphy KC, Whitehead J, Zhou D, Ho SS, Leach JK. 2017; Engineering fibrin hydrogels to promote the wound healing potential of mesenchymal stem cell spheroids. Acta Biomater. 64:176–186. DOI: 10.1016/j.actbio.2017.10.007. PMID: 28987783. PMCID: PMC5682213.
Article
52. Roger Y, Schäck LM, Koroleva A, Noack S, Kurselis K, Krettek C, Chichkov B, Lenarz T, Warnecke A, Hoffmann A. 2016; Grid-like surface structures in thermoplastic polyurethane induce anti-inflammatory and anti-fibrotic processes in bone marrow-derived mesenchymal stem cells. Colloids Surf B Biointerfaces. 148:104–115. DOI: 10.1016/j.colsurfb.2016.06.024. PMID: 27591942.
Article
53. Li M, Wei F, Yin X, Xiao L, Yang L, Su J, Weng J, Feng B, Xiao Y, Zhou Y. 2020; Synergistic regulation of osteoimmune microenvironment by IL-4 and RGD to accelerate osteoge-nesis. Mater Sci Eng C Mater Biol Appl. 109:110508. DOI: 10.1016/j.msec.2019.110508. PMID: 32228925.
Article
Full Text Links
  • IJSC
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr