1. Kochanowicz JF, Nowicka A, Al-Saad SR, Karbowski LM, Gadzinowski J, Szpecht D. 2022; Catheter-related bloodstream infections in infants hospitalized in neonatal intensive care units: a single center study. Sci Rep. 12:13679. DOI:
10.1038/s41598-022-17820-w. PMID:
35953522. PMCID:
PMC9372030.
Article
2. Singh L, Das S, Bhat VB, Plakkal N. 2018; Early neurodevelopmental outcome of very low birthweight neonates with culture-positive blood stream infection: a prospective cohort study. Cureus. 10:e3492. DOI:
10.7759/cureus.3492. PMID:
30648034. PMCID:
PMC6318141.
Article
3. Fleischmann C, Reichert F, Cassini A, Horner R, Harder T, Markwart R, et al. 2021; Global incidence and mortality of neonatal sepsis: a systematic review and meta-analysis. Arch Dis Child. 106:745–52. DOI:
10.1136/archdischild-2020-320217. PMID:
33483376. PMCID:
PMC8311109.
Article
4. Al-Mousa HH, Omar AA, Rosenthal VD, Salama MF, Aly NY, El-Dossoky Noweir M, et al. 2016; Device-associated infection rates, bacterial resistance, length of stay, and mortality in Kuwait: International Nosocomial Infection Consortium findings. Am J Infect Control. 44:444–9. DOI:
10.1016/j.ajic.2015.10.031. PMID:
26775929.
Article
5. Almeida CC, Pissarra da Silva SMS, Flor de Lima Caldas de Oliveira FSD, Guimarães Pereira Areias MHF. 2017; Nosocomial sepsis: evaluation of the efficacy of preventive measures in a level-III neonatal intensive care unit. J Matern Fetal Neonatal Med. 30:2036–41. DOI:
10.1080/14767058.2016.1236245. PMID:
27628652.
Article
6. Arnts IJ, Schrijvers NM, van der Flier M, Groenewoud JM, Antonius T, Liem KD. 2015; Central line bloodstream infections can be reduced in newborn infants using the modified Seldinger technique and care bundles of preventative measures. Acta Paediatr. 104:e152–7. DOI:
10.1111/apa.12915. PMID:
25545676.
Article
7. Bannatyne M, Smith J, Panda M, Abdel-Latif ME, Chaudhari T. 2018; Retrospective cohort analysis of central line associated blood stream infection following introduction of a central line bundle in a neonatal intensive care unit. Int J Pediatr. 2018:4658181. DOI:
10.1155/2018/4658181. PMID:
30245727. PMCID:
PMC6139226.
Article
8. Bierlaire S, Danhaive O, Carkeek K, Piersigilli F. 2021; How to minimize central line-associated bloodstream infections in a neonatal intensive care unit: a quality improvement intervention based on a retrospective analysis and the adoption of an evidence-based bundle. Eur J Pediatr. 180:449–60. DOI:
10.1007/s00431-020-03844-9. PMID:
33083900.
Article
9. Blanchard AC, Fortin E, Rocher I, Moore DL, Frenette C, Tremblay C, et al. 2013; Central line-associated bloodstream infection in neonatal intensive care units. Infect Control Hosp Epidemiol. 34:1167–73. DOI:
10.1086/673464. PMID:
24113600.
Article
10. Bolat F, Uslu S, Bolat G, Comert S, Can E, Bulbul A, et al. 2012; Healthcare-associated infections in a Neonatal Intensive Care Unit in Turkey. Indian Pediatr. 49:951–7. DOI:
10.1007/s13312-012-0249-4. PMID:
22791673.
Article
11. Boutaric E, Gilardi M, Cécile W, Fléchelles O. 2013; [Impact of clinical practice guidelines on the incidence of bloodstream infections related to peripherally inserted central venous catheter in preterm infants]. Arch Pediatr. 20:130–6. French. DOI:
10.1016/j.arcped.2012.11.001. PMID:
23245862.
12. Bunni L, Brunskill K, Parmar R, Townley P, Yoxall B. 2014; Reducing catheter associated blood stream infections in neonatal intensive care. Arch Dis Child Fetal Neonatal Ed. 99(Suppl 1):A71. DOI:
10.1136/archdischild-2014-306576.202.
13. Cabrera DM, Cuba FK, Hernández R, Prevost-Ruiz Y. 2021; Incidence and risk factors of central line catheter-related bloodstream infections. Rev Peru Med Exp Salud Publica. 38:95–100. DOI:
10.17843/rpmesp.2021.381.5108. PMID:
34190932.
14. Callejas A, Osiovich H, Ting JY. 2016; Use of peripherally inserted central catheters (PICC) via scalp veins in neonates. J Matern Fetal Neonatal Med. 29:3434–8. DOI:
10.3109/14767058.2016.1139567. PMID:
26754595.
Article
15. Chandonnet CJ, Kahlon PS, Rachh P, Degrazia M, Dewitt EC, Flaherty KA, et al. 2013; Health care failure mode and effect analysis to reduce NICU line-associated bloodstream infections. Pediatrics. 131:e1961–9. DOI:
10.1542/peds.2012-3293. PMID:
23690523.
Article
16. Cheng HY, Lu CY, Huang LM, Lee PI, Chen JM, Chang LY. 2016; Increased frequency of peripheral venipunctures raises the risk of central-line associated bloodstream infection in neonates with peripherally inserted central venous catheters. J Microbiol Immunol Infect. 49:230–6. DOI:
10.1016/j.jmii.2014.06.001. PMID:
25066708.
Article
17. Cheong SM, Totsu S, Nakanishi H, Uchiyama A, Kusuda S. 2016; Outcomes of peripherally inserted double lumen central catheter in very low birth weight infants. J Neonatal Perinatal Med. 9:99–105. DOI:
10.3233/NPM-16915054. PMID:
27002262.
Article
18. Cleves D, Pino J, Patiño JA, Rosso F, Vélez JD, Pérez P. 2018; Effect of chlorhexidine baths on central-line-associated bloodstream infections in a neonatal intensive care unit in a developing country. J Hosp Infect. 100:e196–9. DOI:
10.1016/j.jhin.2018.03.022. PMID:
29588187.
Article
19. Dumpa V, Adler B, Allen D, Bowman D, Gram A, Ford P, et al. 2019; Reduction in central line-associated bloodstream infection rates after implementations of infection control measures at a level 3 neonatal intensive care unit. Am J Med Qual. 34:488–93. DOI:
10.1177/1062860619873777. PMID:
31479293.
Article
20. Erdei C, McAvoy LL, Gupta M, Pereira S, McGowan EC. 2015; Is zero central line-associated bloodstream infection rate sustainable? A 5-year perspective. Pediatrics. 135:e1485–93. DOI:
10.1542/peds.2014-2523. PMID:
25986020.
Article
21. Ereno IL, Yeo CL. 2016; Umbilical venous catheter (UVC) use in theneonates: the Singapore general hospital experience. J Paediatr Child Health. 52(S2):32–3.
22. Flidel-Rimon O, Guri A, Levi D, Ciobotaro P, Oved M, Shinwell ES. 2019; Reduction of hospital-acquired infections in the neonatal intensive care unit: a long-term commitment. Am J Infect Control. 47:1002–5. DOI:
10.1016/j.ajic.2019.01.001. PMID:
30850254.
Article
23. Fontela PS, Platt RW, Rocher I, Frenette C, Moore D, Fortin E, et al. 2012; Epidemiology of central line-associated bloodstream infections in Quebec intensive care units: a 6-year review. Am J Infect Control. 40:221–6. DOI:
10.1016/j.ajic.2011.04.008. PMID:
21824682.
Article
24. Freeman JJ, Gadepalli SK, Siddiqui SM, Jarboe MD, Hirschl RB. 2015; Improving central line infection rates in the neonatal intensive care unit: effect of hospital location, site of insertion, and implementation of catheter-associated bloodstream infection protocols. J Pediatr Surg. 50:860–3. DOI:
10.1016/j.jpedsurg.2015.02.001. PMID:
25783394. PMCID:
PMC4824061.
Article
25. Freitas FTM, Araujo AFOL, Melo MIS, Romero GAS. 2019; Late-onset sepsis and mortality among neonates in a Brazilian Intensive Care Unit: a cohort study and survival analysis. Epidemiol Infect. 147:e208. DOI:
10.1017/S095026881900092X. PMID:
31364533. PMCID:
PMC6624867.
Article
26. Gadallah MA, Aboul Fotouh AM, Habil IS, Imam SS, Wassef G. 2014; Surveillance of health care-associated infections in a tertiary hospital neonatal intensive care unit in Egypt: 1-year follow-up. Am J Infect Control. 42:1207–11. DOI:
10.1016/j.ajic.2014.07.020. PMID:
25238664.
Article
27. Gerver SM, Mihalkova M, Bion JF, Wilson APR, Chudasama D, Johnson AP, et al. 2020; Surveillance of bloodstream infections in intensive care units in England, May 2016-April 2017: epidemiology and ecology. J Hosp Infect. 106:1–9. DOI:
10.1016/j.jhin.2020.05.010. PMID:
32422311.
Article
28. Greenhalgh M, Gordon A. 2014; Risk of CLABSI in neonates by PICC line dwell time. J Paediatr Child Health. 50(Suppl 1):86.
29. Hei MY, Zhang XC, Gao XY, Zhao LL, Wu ZX, Tian L, et al. 2012; Catheter-related infection and pathogens of umbilical venous catheterization in a neonatal intensive care unit in China. Am J Perinatol. 29:107–14. DOI:
10.1055/s-0031-1295650. PMID:
22131046.
Article
30. Helder OK, van Rosmalen J, van Dalen A, Schafthuizen L, Vos MC, Flint RB, et al. 2020; Effect of the use of an antiseptic barrier cap on the rates of central line-associated bloodstream infections in neonatal and pediatric intensive care. Am J Infect Control. 48:1171–8. DOI:
10.1016/j.ajic.2019.11.026. PMID:
31948717.
Article
31. Hocevar SN, Edwards JR, Horan TC, Morrell GC, Iwamoto M, Lessa FC. 2012; Device-associated infections among neonatal intensive care unit patients: incidence and associated pathogens reported to the National Healthcare Safety Network, 2006-2008. Infect Control Hosp Epidemiol. 33:1200–6. DOI:
10.1086/668425. PMID:
23143356.
Article
32. Holzmann-Pazgal G, Kubanda A, Davis K, Khan AM, Brumley K, Denson SE. 2012; Utilizing a line maintenance team to reduce central-line-associated bloodstream infections in a neonatal intensive care unit. J Perinatol. 32:281–6. DOI:
10.1038/jp.2011.91. PMID:
22011970.
Article
33. Hussain AS, Ariff S. 2017; 5 Year surveillance of clabsi in a tertiary care private sector nicu in Pakistan. Antimicrob Resist Infect Control. 6(Suppl 3):P211.
34. Hussain ASS, Ali SR, Ariff S, Arbab S, Demas S, Zeb J, et al. 2017; A protocol for quality improvement programme to reduce central line-associated bloodstream infections in NICU of low and middle income country. BMJ Paediatr Open. 1:e000008. DOI:
10.1136/bmjpo-2017-000008. PMID:
29637091. PMCID:
PMC5842986.
Article
35. Jansen SJ, Lopriore E, Berkhout RJM, van der Hoeven A, Saccoccia B, de Boer JM, et al. 2021; The effect of single-room care versus open-bay care on the incidence of bacterial nosocomial infections in pre-term neonates: a retrospective cohort study. Infect Dis Ther. 10:373–86. DOI:
10.1007/s40121-020-00380-9. PMCID:
PMC7756131. PMID:
33355902.
Article
36. Jansen SJ, van der Hoeven A, van den Akker T, Veenhof M, von Asmuth EGJ, Veldkamp KE, et al. 2022; A longitudinal analysis of nosocomial bloodstream infections among preterm neonates. Eur J Clin Microbiol Infect Dis. 41:1327–36. DOI:
10.1007/s10096-022-04502-8. PMID:
36178568. PMCID:
PMC9556429.
Article
37. Jeong IS, Park SM, Lee JM, Song JY, Lee SJ. 2013; Effect of central line bundle on central line-associated bloodstream infections in intensive care units. Am J Infect Control. 41:710–6. DOI:
10.1016/j.ajic.2012.10.010. PMID:
23394886.
Article
38. Kim M, Choi S, Jung YH, Choi CW, Shin MJ, Kim ES, et al. 2021; Analysis of central line-associated bloodstream infection among infants in the neonatal intensive care unit: a single center study. Pediatr Infect Vaccine. 28:133–43. DOI:
10.14776/piv.2021.28.e18.
Article
39. Kinoshita D, Hada S, Fujita R, Matsunaga N, Sakaki H, Ohki Y. 2019; Maximal sterile barrier precautions independently contribute to decreased central line-associated bloodstream infection in very low birth weight infants: a prospective multicenter observational study. Am J Infect Control. 47:1365–9. DOI:
10.1016/j.ajic.2019.05.006. PMID:
31266662.
Article
40. Kleinlugtenbeld OJ, van Straaten HLM, van den Bos MI, Hemels MAC, d'Haens EJ. 2012; Reduction in central line associated bloodstream infections by introducing a quality improvement pathway 'clean line'. Arch Dis Child. 97(Suppl 2):A497. DOI:
10.1136/archdischild-2012-302724.1759.
41. Kourkouni E, Kourlaba G, Chorianopoulou E, Tsopela GC, Kopsidas I, Spyridaki I, et al. 2018; Surveillance for central-line-associated bloodstream infections: accuracy of different sampling strategies. Infect Control Hosp Epidemiol. 39:1210–5. DOI:
10.1017/ice.2018.187. PMID:
30156182.
Article
42. Kulali F, Çalkavur Ş, Oruç Y, Demiray N, Devrim İ. 2019; Impact of central line bundle for prevention of umbilical catheter-related bloodstream infections in a neonatal intensive care unit: a pre-post intervention study. Am J Infect Control. 47:387–90. DOI:
10.1016/j.ajic.2018.10.002. PMID:
30502109.
Article
43. Leblebicioglu H, Erben N, Rosenthal VD, Atasay B, Erbay A, Unal S, et al. 2014; International Nosocomial Infection Control Consortium (INICC) national report on device-associated infection rates in 19 cities of Turkey, data summary for 2003-2012. Ann Clin Microbiol Antimicrob. 13:51. DOI:
10.1186/s12941-014-0051-3. PMID:
25403704. PMCID:
PMC4255447.
Article
44. Leistner R, Thürnagel S, Schwab F, Piening B, Gastmeier P, Geffers C. 2013; The impact of staffing on central venous catheter-associated bloodstream infections in preterm neonates - results of nation-wide cohort study in Germany. Antimicrob Resist Infect Control. 2:11. DOI:
10.1186/2047-2994-2-11. PMID:
23557510. PMCID:
PMC3643825.
Article
45. Leveillee A, Lapointe A, Lachance C, Descarries M, Autmizguine J, Dubois J, et al. 2018; Assessing effect of catheter type and position on central line-associated bloodstream infections in the NICU. Paediatr Child Health. 23(Suppl 1):e59. DOI:
10.1093/pch/pxy054.149. PMCID:
PMC5961418.
Article
46. Milstone AM, Reich NG, Advani S, Yuan G, Bryant K, Coffin SE, et al. 2013; Catheter dwell time and CLABSIs in neonates with PICCs: a multicenter cohort study. Pediatrics. 132:e1609–15. DOI:
10.1542/peds.2013-1645. PMID:
24218474. PMCID:
PMC3838533.
Article
47. Mohamed Cassim S, Skiffington C, Lucas C, Anand D. 2015; An improvement project to reduce central line associated blood stream infection (CLABSI) in newborn infants. Arch Dis Child. 100(Suppl 3):A238–9. DOI:
10.1136/archdischild-2015-308599.491.
48. Nercelles P, Vernal S, Brenner P, Rivero P. 2015; [Risk of bacteremia associated with intravascular devices stratified by birth weight in born of a public hospital of high complexity: follow-up to seven years]. Rev Chilena Infectol. 32:278–82. Spanish. DOI:
10.4067/S0716-10182015000400004. PMID:
26230433.
49. Nielsen CL, Zachariassen G, Holm KG. 2022; Central line-associated bloodstream infection in infants admitted to a level lllneonatal intensive care unit. Dan Med J. 69:A05210463. PMID:
35485786.
51. Patrick SW, Kawai AT, Kleinman K, Jin R, Vaz L, Gay C, et al. 2014; Health care-associated infections among critically ill children in the US, 2007-2012. Pediatrics. 134:705–12. DOI:
10.1542/peds.2014-0613. PMID:
25201802.
Article
52. Pavcnik-Arnol M, Kalan G. 2012; Risk factors for central-line associated bloodstream infections in critically ill neonates. Arch Dis Child. 97(Suppl 2):A169. DOI:
10.1136/archdischild-2012-302724.0582.
53. Pharande P, Lindrea KB, Smyth J, Evans M, Lui K, Bolisetty S. 2018; Trends in late-onset sepsis in a neonatal intensive care unit following implementation of infection control bundle: a 15-year audit. J Paediatr Child Health. 54:1314–20. DOI:
10.1111/jpc.14078. PMID:
29888413.
Article
54. Piazza AJ, Brozanski B, Provost L, Grover TR, Chuo J, Smith JR, et al. 2016; SLUG bug: quality improvement with orchestrated testing leads to NICU CLABSI reduction. Pediatrics. 137:e20143642. DOI:
10.1542/peds.2014-3642. PMID:
26702032.
Article
55. Ponnusamy V, Venkatesh V, Curley A, Musonda P, Brown N, Tremlett C, et al. 2012; Segmental percutaneous central venous line cultures for diagnosis of catheter-related sepsis. Arch Dis Child Fetal Neonatal Ed. 97:F273–8. DOI:
10.1136/archdischild-2011-300822. PMID:
22174018.
Article
56. Rallis D, Karagianni P, Papakotoula I, Nikolaidis N, Tsakalidis C. 2016; Significant reduction of central line-associated bloodstream infection rates in a tertiary neonatal unit. Am J Infect Control. 44:485–7. DOI:
10.1016/j.ajic.2015.10.040. PMID:
26717871.
Article
57. Resende DS, Peppe AL, dos Reis H, Abdallah VO, Ribas RM, Gontijo Filho PP. 2015; Late onset sepsis in newborn babies: epidemiology and effect of a bundle to prevent central line associated bloodstream infections in the neonatal intensive care unit. Braz J Infect Dis. 19:52–7. DOI:
10.1016/j.bjid.2014.09.006. PMID:
25523073. PMCID:
PMC9425250.
Article
58. Rosenthal VD, Dueñas L, Sobreyra-Oropeza M, Ammar K, Navoa-Ng JA, de Casares AC, et al. 2013; Findings of the International Nosocomial Infection Control Consortium (INICC), part III: effectiveness of a multidimensional infection control approach to reduce central line-associated bloodstream infections in the neonatal intensive care units of 4 developing countries. Infect Control Hosp Epidemiol. 34:229–37. DOI:
10.1086/669511. PMID:
23388356.
Article
59. Salm F, Schwab F, Geffers C, Gastmeier P, Piening B. 2016; The implementation of an evidence-based bundle for bloodstream infections in neonatal intensive care units in Germany: a controlled intervention study to improve patient safety. Infect Control Hosp Epidemiol. 37:798–804. DOI:
10.1017/ice.2016.72. PMID:
27045855.
Article
60. Sanderson E, Bolisetty S, Bajuk B, Callander I, Abdel-Latif M, Lui K. 2012; Nosocomial sepsis in NICU - risks associated with duration and type of central venous catheters in NSW and the ACT. J Paediatr Child Health. 48(Suppl 1):132.
61. Shalabi M, Adel M, Yoon E, Aziz K, Lee S, Shah PS. 2015; Risk of infection using peripherally inserted central and umbilical catheters in preterm neonates. Pediatrics. 136:1073–9. DOI:
10.1542/peds.2015-2710. PMID:
26574592.
Article
62. Shepherd EG, Kelly TJ, Vinsel JA, Cunningham DJ, Keels E, Beauseau W, et al. 2015; Significant reduction of central-line associated bloodstream infections in a network of diverse neonatal nurseries. J Pediatr. 167:41–6.e1. DOI:
10.1016/j.jpeds.2015.03.046. PMID:
25917770.
Article
63. Sinha AK, Murthy V, Nath P, Morris JK, Millar M. 2016; Prevention of late onset sepsis and central-line associated blood stream infection in preterm infants. Pediatr Infect Dis J. 35:401–6. DOI:
10.1097/INF.0000000000001019. PMID:
26629870.
Article
64. Soares BN, Pissarra S, Rouxinol-Dias AL, Costa S, Guimarães H. 2018; Complications of central lines in neonates admitted to a level III Neonatal Intensive Care Unit. J Matern Fetal Neonatal Med. 31:2770–6. DOI:
10.1080/14767058.2017.1355902. PMID:
28707497.
Article
65. Steiner M, Langgartner M, Cardona F, Waldhör T, Schwindt J, Haiden N, et al. 2015; Significant reduction of catheter-associated blood stream infections in preterm neonates after implementation of a care bundle focusing on simulation training of central line insertion. Pediatr Infect Dis J. 34:1193–6. DOI:
10.1097/INF.0000000000000841. PMID:
26186105.
Article
66. Taylor JE, McDonald SJ, Earnest A, Buttery J, Fusinato B, Hovenden S, et al. 2017; A quality improvement initiative to reduce central line infection in neonates using checklists. Eur J Pediatr. 176:639–46. DOI:
10.1007/s00431-017-2888-x. PMID:
28283785.
Article
67. Ting JY, Goh VS, Osiovich H. 2013; Reduction of central line-associated bloodstream infection rates in a neonatal intensive care unit after implementation of a multidisciplinary evidence-based quality improvement collaborative: a four-year surveillance. Can J Infect Dis Med Microbiol. 24:185–90. DOI:
10.1155/2013/781690. PMID:
24489559. PMCID:
PMC3905000.
Article
68. Wen J, Yu Q, Chen H, Chen N, Huang S, Cai W. 2017; Peripherally inserted central venous catheter-associated complications exert negative effects on body weight gain in neonatal intensive care units. Asia Pac J Clin Nutr. 26:1–5. DOI:
10.6133/apjcn.112015.07. PMID:
28049254.
69. Wilder KA, Wall B, Haggard D, Epperson T. 2016; CLABSI reduction strategy: a systematic central line quality improvement initiative integrating line-rounding principles and a team approach. Adv Neonatal Care. 16:170–7. DOI:
10.1097/ANC.0000000000000259. PMID:
27200515.
70. Worth LJ, Daley AJ, Spelman T, Bull AL, Brett JA, Richards MJ. 2018; Central and peripheral line-associated bloodstream infections in Australian neonatal and paediatric intensive care units: findings from a comprehensive Victorian surveillance network, 2008-2016. J Hosp Infect. 99:55–61. DOI:
10.1016/j.jhin.2017.11.021. PMID:
29222036.
Article
71. Yalaz M, Altun-Köroğlu O, Ulusoy B, Yildiz B, Akisu M, Vardar F, et al. 2012; Evaluation of device-associated infections in a neonatal intensive care unit. Turk J Pediatr. 54:128–35. PMID:
22734298.
72. Yumani DF, van den Dungen FA, van Weissenbruch MM. 2013; Incidence and risk factors for catheter-associated bloodstream infections in neonatal intensive care. Acta Paediatr. 102:e293–8. DOI:
10.1111/apa.12256. PMID:
23627968.
Article
73. Zachariah P, Furuya EY, Edwards J, Dick A, Liu H, Herzig CT, et al. 2014; Compliance with prevention practices and their association with central line-associated bloodstream infections in neonatal intensive care units. Am J Infect Control. 42:847–51. DOI:
10.1016/j.ajic.2014.04.020. PMID:
25087136. PMCID:
PMC4123126.
74. Zhou Q, Lee SK, Hu XJ, Jiang SY, Chen C, Wang CQ, et al. 2015; Successful reduction in central line-associated bloodstream infections in a Chinese neonatal intensive care unit. Am J Infect Control. 43:275–9. DOI:
10.1016/j.ajic.2014.12.001. PMID:
25728154.
Article
77. Diaz JV, Riviello ED, Papali A, Adhikari NKJ, Ferreira JC. 2019; Global critical care: moving forward in resource-limited settings. Ann Glob Health. 85:3. DOI:
10.5334/aogh.2413. PMID:
30741504. PMCID:
PMC7052346.
Article
78. Hug L, Alexander M, You D, Alkema L. UN Inter-agency Group for Child Mortality Estimation. 2019; National, regional, and global levels and trends in neonatal mortality between 1990 and 2017, with scenario-based projections to 2030: a systematic analysis. Lancet Glob Health. 7:e710–20. Erratum in: Lancet Glob Health 2019;7:e1179. DOI:
10.1016/S2214-109X(19)30163-9. PMID:
31097275. PMCID:
PMC6527519.
Article
80. Martinez AM, Khu DT, Boo NY, Neou L, Saysanasongkham B, Partridge JC. 2012; Barriers to neonatal care in developing countries: parents' and providers' perceptions. J Paediatr Child Health. 48:852–8. DOI:
10.1111/j.1440-1754.2012.02544.x. PMID:
22970681.
Article
81. Markwart R, Saito H, Harder T, Tomczyk S, Cassini A, Fleischmann-Struzek C, et al. 2020; Epidemiology and burden of sepsis acquired in hospitals and intensive care units: a systematic review and meta-analysis. Intensive Care Med. 46:1536–51. DOI:
10.1007/s00134-020-06106-2. PMID:
32591853. PMCID:
PMC7381455.
Article