Int J Thyroidol.  2023 May;16(1):89-95. 10.11106/ijt.2023.16.1.89.

Thyroid Cancer, Iodine, and Gene Mutation

Affiliations
  • 1Division of Endocrinology & Metabolism, Department of Medicine and Thyroid Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea

Abstract

Excessive iodine intake is associated with the development of papillary thyroid carcinoma and increases the expression of BRAF mutations. In order to prevent most patients with thyroid cancer from unnecessary treatment, it is important to distinguish the patients who need aggressive treatment from those who do not. Although conventional prognostic systems alone have limitations, adding molecular tests can more accurately predict the final outcome of each patient, because molecular changes precede histological changes. Although BRAF mutation has drawn much attention on its high prevalence, it cannot predict the clinical outcome of each patient. It was no longer significant after the adjustment with other prognostic factors. The isolated BRAF mutation may be a sensitive, but not specific marker of recurrence and mortality. Recently, telomerase reverse transcriptase (TERT) promoter mutation has been identified in thyroid cancer. It increases telomerase activity, which allows cancer cells to immortalize. It was found in 10 to 20% of differentiated thyroid carcinoma and more than 40% of dedifferentiated thyroid carcinoma. It is highly prevalent in old age, large tumor, aggressive histology, advanced stages, and distant metastasis. It is strongly associated with increased recurrence and mortality, therefore, aggressive treatment is required in patients with TERT promoter mutation. Concomitant BRAF and TERT promoter mutations show the most aggressive clinical outcomes. When ultrasonography shows nonparallel orientation and microlobulated margins, especially in those older than 50 years, there is a high probability of accompanying TERT promoter mutation. Inclusion of TERT promoter mutation analysis with conventional clinicopathological evaluation can lead to better prognostication and management for individual patients.

Keyword

Thyroid carcinoma; Iodine; BRAF mutation; TERT promoter mutation

Reference

References

1. Dal Maso L, Bosetti C, La Vecchia C, Franceschi S. 2009; Risk factors for thyroid cancer: an epidemiological review focused on nutritional factors. Cancer Causes Control. 20(1):75–86. DOI: 10.1007/s10552-008-9219-5. PMID: 18766448.
Article
2. Ishigaki K, Namba H, Takamura N, Saiwai H, Parshin V, Ohashi T, et al. 2001; Urinary iodine levels and thyroid diseases in children; comparison between Nagasaki and Chernobyl. Endocr J. 48(5):591–5. DOI: 10.1507/endocrj.48.591. PMID: 11789565.
3. Fuse Y, Saito N, Tsuchiya T, Shishiba Y, Irie M. 2007; Smaller thyroid gland volume with high urinary iodine excretion in Japanese schoolchildren: normative reference values in an iodine- sufficient area and comparison with the WHO/ICCIDD reference. Thyroid. 17(2):145–55. DOI: 10.1089/thy.2006.0209. PMID: 17316117.
Article
4. Orito Y, Oku H, Kubota S, Amino N, Shimogaki K, Hata M, et al. 2009; Thyroid function in early pregnancy in Japanese healthy women: relation to urinary iodine excretion, emesis, and fetal and child development. J Clin Endocrinol Metab. 94(5):1683–8. DOI: 10.1210/jc.2008-2111. PMID: 19258403.
Article
5. Kim JY, Moon SJ, Kim KR, Sohn CY, Oh JJ. 1998; Dietary iodine intake and urinary iodine excretion in normal Korean adults. Yonsei Med J. 39(4):355–62. DOI: 10.3349/ymj.1998.39.4.355. PMID: 9752802.
Article
6. Kim HI, Oh HK, Park SY, Jang HW, Shin MH, Kim SW, et al. 2019; Urinary iodine concentration and thyroid hormones: Korea National Health and Nutrition Examination Survey 2013-2015. Eur J Nutr. 58(1):233–40. DOI: 10.1007/s00394-017-1587-8. PMID: 29188371.
Article
7. Burgess JR, Dwyer T, McArdle K, Tucker P, Shugg D. 2000; The changing incidence and spectrum of thyroid carcinoma in Tasmania (1978-1998) during a transition from iodine sufficiency to iodine deficiency. J Clin Endocrinol Metab. 85(4):1513–7. DOI: 10.1210/jc.85.4.1513.
Article
8. Feldt-Rasmussen U. 2001; Iodine and cancer. Thyroid. 11(5):483–6. DOI: 10.1089/105072501300176435. PMID: 11396706.
Article
9. Vuong HG, Kondo T, Oishi N, Nakazawa T, Mochizuki K, Inoue T, et al. 2016; Genetic alterations of differentiated thyroid carcinoma in iodine-rich and iodine-deficient countries. Cancer Med. 5(8):1883–9. DOI: 10.1002/cam4.781. PMID: 27264674. PMCID: PMC4898973.
Article
10. Park SH, Ji JG, Lee HS, Lee JB, Ahn GH, Kim YI, et al. 1983; Pathologic study on thyroid diseases among Koreans. Inje Med J. 4(4):349–55.
11. Hong EK, Lee JD. 1990; A national study on biopsy-confirmed thyroid diseases among Koreans: an analysis of 7758 cases. J Korean Med Sci. 5(1):1–12. DOI: 10.3346/jkms.1990.5.1.1. PMID: 2206461. PMCID: PMC3053727.
Article
12. Oh CM, Lim J, Jung YS, Kim Y, Jung KW, Hong S, et al. 2021; Decreasing trends in thyroid cancer incidence in South Korea: what happened in South Korea? Cancer Med. 10(12):4087–96. DOI: 10.1002/cam4.3926. PMID: 33979040. PMCID: PMC8209587.
Article
13. Kim SW, Lee JI, Kim JW, Ki CS, Oh YL, Choi YL, et al. 2010; BRAFV600E mutation analysis in fine-needle aspiration cytology specimens for evaluation of thyroid nodule: a large series in a BRAFV600E-prevalent population. J Clin Endocrinol Metab. 95(8):3693–700. DOI: 10.1210/jc.2009-2795. PMID: 20501689.
14. Kim HJ, Kim NK, Park HK, Byun DW, Suh K, Yoo MH, et al. 2017; Strong association of relatively low and extremely excessive iodine intakes with thyroid cancer in an iodine-replete area. Eur J Nutr. 56(3):965–71. DOI: 10.1007/s00394-015-1144-2. PMID: 26746218.
Article
15. Kim HJ, Park HK, Byun DW, Suh K, Yoo MH, Min YK, et al. 2018; Iodine intake as a risk factor for BRAF mutations in papillary thyroid cancer patients from an iodine-replete area. Eur J Nutr. 57(2):809–15. DOI: 10.1007/s00394-016-1370-2. PMID: 28258306.
Article
16. Zhang X, Zhang F, Li Q, Aihaiti R, Feng C, Chen D, et al. 2022; The relationship between urinary iodine concentration and papillary thyroid cancer: a systematic review and meta-analysis. Front Endocrinol (Lausanne). 13:1049423. DOI: 10.3389/fendo.2022.1049423. PMID: 36387866. PMCID: PMC9659619.
Article
17. Kanno J, Onodera H, Furuta K, Maekawa A, Kasuga T, Hayashi Y. 1992; Tumor-promoting effects of both iodine deficiency and iodine excess in the rat thyroid. Toxicol Pathol. 20(2):226–35. DOI: 10.1177/019262339202000209. PMID: 1475583.
Article
18. Vitale M, Di Matola T, D'Ascoli F, Salzano S, Bogazzi F, Fenzi G, et al. 2000; Iodide excess induces apoptosis in thyroid cells through a p53-independent mechanism involving oxidative stress. Endocrinology. 141(2):598–605. DOI: 10.1210/endo.141.2.7291. PMID: 10650940.
Article
19. Boltze C, Brabant G, Dralle H, Gerlach R, Roessner A, Hoang-Vu C. 2002; Radiation-induced thyroid carcinogenesis as a function of time and dietary iodine supply: an in vivo model of tumorigenesis in the rat. Endocrinology. 143(7):2584–92. DOI: 10.1210/endo.143.7.8914. PMID: 12072390.
Article
20. Guan H, Ji M, Bao R, Yu H, Wang Y, Hou P, et al. 2009; Association of high iodine intake with the T1799A BRAF mutation in papillary thyroid cancer. J Clin Endocrinol Metab. 94(5):1612–7. DOI: 10.1210/jc.2008-2390. PMID: 19190105.
Article
21. Kowalska A, Walczyk A, Kowalik A, Palyga I, Trybek T, Kopczynski J, et al. 2016; Increase in papillary thyroid cancer incidence is accompanied by changes in the frequency of the BRAF V600E mutation: a single-institution study. Thyroid. 26(4):543–51. DOI: 10.1089/thy.2015.0352. PMID: 26889698.
22. Liu XH, Chen GG, Vlantis AC, van Hasselt CA. Iodine mediated mechanisms and thyroid carcinoma. Crit Rev Clin Lab Sci. 2009; 46(5-6):302–18. DOI: 10.3109/10408360903306384. PMID: 19958216.
Article
23. Wang F, Wang Y, Wang L, Wang X, Sun C, Xing M, et al. 2014; Strong association of high urinary iodine with thyroid nodule and papillary thyroid cancer. Tumour Biol. 35(11):11375–9. DOI: 10.1007/s13277-014-2397-8. PMID: 25119588.
Article
24. Hay ID, Bergstralh EJ, Goellner JR, Ebersold JR, Grant CS. 1993; Predicting outcome in papillary thyroid carcinoma: development of a reliable prognostic scoring system in a cohort of 1779 patients surgically treated at one institution during 1940 through 1989. Surgery. 114(6):1050–7. discussion 7–8.
25. Gupta N, Dasyam AK, Carty SE, Nikiforova MN, Ohori NP, Armstrong M, et al. 2013; RAS mutations in thyroid FNA specimens are highly predictive of predominantly low-risk follicular-pattern cancers. J Clin Endocrinol Metab. 98(5):E914–22. DOI: 10.1210/jc.2012-3396. PMID: 23539734. PMCID: PMC5393462.
26. Cancer Genome Atlas Research Network. 2014; Integrated genomic characterization of papillary thyroid carcinoma. Cell. 159(3):676–90. DOI: 10.1016/j.cell.2014.09.050. PMID: 25417114. PMCID: PMC4243044.
27. Chung JH. 2020; BRAF and TERT promoter mutations: clinical application in thyroid cancer. Endocr J. 67(6):577–84. DOI: 10.1507/endocrj.EJ20-0063. PMID: 32321884.
Article
28. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, et al. 2002; Mutations of the BRAF gene in human cancer. Nature. 417(6892):949–54. DOI: 10.1038/nature00766. PMID: 12068308.
Article
29. Soares P, Trovisco V, Rocha AS, Lima J, Castro P, Preto A, et al. 2003; BRAF mutations and RET/PTC rearrangements are alternative events in the etiopathogenesis of PTC. Oncogene. 22(29):4578–80. DOI: 10.1038/sj.onc.1206706. PMID: 12881714.
Article
30. Kimura ET, Nikiforova MN, Zhu Z, Knauf JA, Nikiforov YE, Fagin JA. 2003; High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res. 63(7):1454–7.
31. Fukushima T, Suzuki S, Mashiko M, Ohtake T, Endo Y, Takebayashi Y, et al. 2003; BRAF mutations in papillary carcinomas of the thyroid. Oncogene. 22(41):6455–7. DOI: 10.1038/sj.onc.1206739. PMID: 14508525.
Article
32. Namba H, Nakashima M, Hayashi T, Hayashida N, Maeda S, Rogounovitch TI, et al. 2003; Clinical implication of hot spot BRAF mutation, V599E, in papillary thyroid cancers. J Clin Endocrinol Metab. 88(9):4393–7. DOI: 10.1210/jc.2003-030305. PMID: 12970315.
33. Nikiforova MN, Kimura ET, Gandhi M, Biddinger PW, Knauf JA, Basolo F, et al. 2003; BRAF mutations in thyroid tumors are restricted to papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from papillary carcinomas. J Clin Endocrinol Metab. 88(11):5399–404. DOI: 10.1210/jc.2003-030838. PMID: 14602780.
34. Jung CK, Im SY, Kang YJ, Lee H, Jung ES, Kang CS, et al. 2012; Mutational patterns and novel mutations of the BRAF gene in a large cohort of Korean patients with papillary thyroid carcinoma. Thyroid. 22(8):791–7. DOI: 10.1089/thy.2011.0123. PMID: 22471241.
Article
35. Nikiforov YE, Steward DL, Robinson-Smith TM, Haugen BR, Klopper JP, Zhu Z, et al. 2009; Molecular testing for mutations in improving the fine-needle aspiration diagnosis of thyroid nodules. J Clin Endocrinol Metab. 94(6):2092–8. DOI: 10.1210/jc.2009-0247. PMID: 19318445.
Article
36. Kim TH, Park YJ, Lim JA, Ahn HY, Lee EK, Lee YJ, et al. 2012; The association of the BRAF(V600E) mutation with prognostic factors and poor clinical outcome in papillary thyroid cancer: a meta-analysis. Cancer. 118(7):1764–73. DOI: 10.1002/cncr.26500. PMID: 21882184.
Article
37. Tufano RP, Teixeira GV, Bishop J, Carson KA, Xing M. 2012; BRAF mutation in papillary thyroid cancer and its value in tailoring initial treatment: a systematic review and meta-analysis. Medicine (Baltimore). 91(5):274–86. DOI: 10.1097/MD.0b013e31826a9c71. PMID: 22932786.
38. Xing M, Alzahrani AS, Carson KA, Viola D, Elisei R, Bendlova B, et al. 2013; Association between BRAF V600E mutation and mortality in patients with papillary thyroid cancer. JAMA. 309(14):1493–501. DOI: 10.1001/jama.2013.3190. PMID: 23571588. PMCID: PMC3791140.
39. Xing M, Alzahrani AS, Carson KA, Shong YK, Kim TY, Viola D, et al. 2015; Association between BRAF V600E mutation and recurrence of papillary thyroid cancer. J Clin Oncol. 33(1):42–50. DOI: 10.1200/JCO.2014.56.8253. PMID: 25332244. PMCID: PMC4268252.
Article
40. Liu RT, Chen YJ, Chou FF, Li CL, Wu WL, Tsai PC, et al. 2005; No correlation between BRAFV600E mutation and clinicopathological features of papillary thyroid carcinomas in Taiwan. Clin Endocrinol (Oxf). 63(4):461–6. DOI: 10.1111/j.1365-2265.2005.02367.x. PMID: 16181240.
Article
41. Kim TY, Kim WB, Song JY, Rhee YS, Gong G, Cho YM, et al. 2005; The BRAF mutation is not associated with poor prognostic factors in Korean patients with conventional papillary thyroid microcarcinoma. Clin Endocrinol (Oxf). 63(5):588–93. DOI: 10.1111/j.1365-2265.2005.02389.x. PMID: 16268813.
42. Ito Y, Yoshida H, Maruo R, Morita S, Takano T, Hirokawa M, et al. 2009; BRAF mutation in papillary thyroid carcinoma in a Japanese population: its lack of correlation with high-risk clinicopathological features and disease-free survival of patients. Endocr J. 56(1):89–97. DOI: 10.1507/endocrj.K08E-208. PMID: 18840924.
Article
43. Calado RT, Young NS. 2009; Telomere diseases. N Engl J Med. 361(24):2353–65. DOI: 10.1056/NEJMra0903373. PMID: 20007561. PMCID: PMC3401586.
Article
44. Shay JW, Bacchetti S. 1997; A survey of telomerase activity in human cancer. Eur J Cancer. 33(5):787–91. DOI: 10.1016/S0959-8049(97)00062-2. PMID: 9282118.
Article
45. Huang FW, Hodis E, Xu MJ, Kryukov GV, Chin L, Garraway LA. 2013; Highly recurrent TERT promoter mutations in human melanoma. Science. 339(6122):957–9. DOI: 10.1126/science.1229259. PMID: 23348506. PMCID: PMC4423787.
Article
46. Horn S, Figl A, Rachakonda PS, Fischer C, Sucker A, Gast A, et al. 2013; TERT promoter mutations in familial and sporadic melanoma. Science. 339(6122):959–61. DOI: 10.1126/science.1230062. PMID: 23348503.
Article
47. Vinagre J, Almeida A, Populo H, Batista R, Lyra J, Pinto V, et al. 2013; Frequency of TERT promoter mutations in human cancers. Nat Commun. 4:2185. DOI: 10.1038/ncomms3185. PMID: 23887589.
Article
48. Landa I, Ganly I, Chan TA, Mitsutake N, Matsuse M, Ibrahimpasic T, et al. 2013; Frequent somatic TERT promoter mutations in thyroid cancer: higher prevalence in advanced forms of the disease. J Clin Endocrinol Metab. 98(9):E1562–6. DOI: 10.1210/jc.2013-2383. PMID: 23833040. PMCID: PMC3763971.
Article
49. Liu X, Bishop J, Shan Y, Pai S, Liu D, Murugan AK, et al. 2013; Highly prevalent TERT promoter mutations in aggressive thyroid cancers. Endocr Relat Cancer. 20(4):603–10. DOI: 10.1530/ERC-13-0210. PMID: 23766237. PMCID: PMC3782569.
Article
50. Liu T, Wang N, Cao J, Sofiadis A, Dinets A, Zedenius J, et al. 2014; The age- and shorter telomere-dependent TERT promoter mutation in follicular thyroid cell-derived carcinomas. Oncogene. 33(42):4978–84. DOI: 10.1038/onc.2013.446. PMID: 24141777.
Article
51. Liu R, Xing M. 2016; TERT promoter mutations in thyroid cancer. Endocr Relat Cancer. 23(3):R143–55. DOI: 10.1530/ERC-15-0533. PMID: 26733501. PMCID: PMC4750651.
Article
52. Kim TH, Kim YE, Ahn S, Kim JY, Ki CS, Oh YL, et al. 2016; TERT promoter mutations and long-term survival in patients with thyroid cancer. Endocr Relat Cancer. 23(10):813–23. DOI: 10.1530/ERC-16-0219. PMID: 27528624.
Article
53. Yang H, Park H, Ryu HJ, Heo J, Kim JS, Oh YL, et al. 2022; Frequency of TERT promoter mutations in real-world analysis of 2,092 thyroid carcinoma patients. Endocrinol Metab (Seoul). 37(4):652–63. DOI: 10.3803/EnM.2022.1477. PMID: 35864728. PMCID: PMC9449103.
54. Yang X, Li J, Li X, Liang Z, Gao W, Liang J, et al. 2017; TERT promoter mutation predicts radioiodine-refractory character in distant metastatic differentiated thyroid cancer. J Nucl Med. 58(2):258–65. DOI: 10.2967/jnumed.116.180240. PMID: 27493271.
Article
55. Liu X, Qu S, Liu R, Sheng C, Shi X, Zhu G, et al. 2014; TERT promoter mutations and their association with BRAF V600E mutation and aggressive clinicopathological characteristics of thyroid cancer. J Clin Endocrinol Metab. 99(6):E1130–6. DOI: 10.1210/jc.2013-4048. PMID: 24617711. PMCID: PMC4037723.
56. Oishi N, Kondo T, Ebina A, Sato Y, Akaishi J, Hino R, et al. 2017; Molecular alterations of coexisting thyroid papillary carcinoma and anaplastic carcinoma: identification of TERT mutation as an independent risk factor for transformation. Mod Pathol. 30(11):1527–37. DOI: 10.1038/modpathol.2017.75. PMID: 28731042.
Article
57. Vuong HG, Altibi AMA, Duong UNP, Hassell L. 2017; Prognostic implication of BRAF and TERT promoter mutation combination in papillary thyroid carcinoma-a meta-analysis. Clin Endocrinol (Oxf). 87(5):411–7. DOI: 10.1111/cen.13413. PMID: 28666074.
Article
58. Song YS, Yoo SK, Kim HH, Jung G, Oh AR, Cha JY, et al. 2019; Interaction of BRAF-induced ETS factors with mutant TERT promoter in papillary thyroid cancer. Endocr Relat Cancer. 26(6):629–41. DOI: 10.1530/ERC-17-0562. PMID: 30999281.
Article
59. Melo M, Batista R, Vinagre J, Martins MJ, Costa G, et al. Gaspar da Rocha A. 2017; TERT, BRAF, and NRAS in primary thyroid cancer and metastatic disease. J Clin Endocrinol Metab. 102(6):1898–907. DOI: 10.1210/jc.2016-2785. PMID: 28323937.
Article
60. Liu R, Bishop J, Zhu G, Zhang T, Ladenson PW, Xing M. 2017; Mortality risk stratification by combining BRAF V600E and TERT promoter mutations in papillary thyroid cancer: genetic duet of BRAF and TERT promoter mutations in thyroid cancer mortality. JAMA Oncol. 3(2):202–8. DOI: 10.1001/jamaoncol.2016.3288. PMID: 27581851.
Article
61. Moon S, Song YS, Kim YA, Lim JA, Cho SW, Moon JH, et al. 2017; Effects of coexistent BRAF(V600E) and TERT promoter mutations on poor clinical outcomes in papillary thyroid cancer: a meta-analysis. Thyroid. 27(5):651–60. DOI: 10.1089/thy.2016.0350. PMID: 28181854.
Article
62. Hahn SY, Kim TH, Ki CS, Kim SW, Ahn S, Shin JH, et al. 2017; Ultrasound and clinicopathological features of papillary thyroid carcinomas with BRAF and TERT promoter mutations. Oncotarget. 8(65):108946–57. DOI: 10.18632/oncotarget.22430. PMID: 29312581. PMCID: PMC5752494.
Article
63. Kim TH, Ki CS, Hahn SY, Oh YL, Jang HW, Kim SW, et al. 2017; Ultrasonographic prediction of highly aggressive telomerase reverse transcriptase (TERT) promoter-mutated papillary thyroid cancer. Endocrine. 57(2):234–40. DOI: 10.1007/s12020-017-1340-3. PMID: 28616852.
64. Tuttle RM, Tala H, Shah J, Leboeuf R, Ghossein R, Gonen M, et al. 2010; Estimating risk of recurrence in differentiated thyroid cancer after total thyroidectomy and radioactive iodine remnant ablation: using response to therapy variables to modify the initial risk estimates predicted by the new American Thyroid Association staging system. Thyroid. 20(12):1341–9. DOI: 10.1089/thy.2010.0178. PMID: 21034228. PMCID: PMC4845674.
Article
65. Kim TH, Ki CS, Kim HS, Kim K, Choe JH, Kim JH, et al. 2017; Refining dynamic risk stratification and prognostic groups for differentiated thyroid cancer with TERT promoter mutations. J Clin Endocrinol Metab. 102(5):1757–64. DOI: 10.1210/jc.2016-3434. PMID: 28323925.
Article
66. Park H, Shin HC, Yang H, Heo J, Ki CS, Kim HS, et al. 2022; Molecular classification of follicular thyroid carcinoma based on TERT promoter mutations. Mod Pathol. 35(2):186–92. DOI: 10.1038/s41379-021-00907-6. PMID: 34497362. PMCID: PMC8786663.
Article
Full Text Links
  • IJT
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr