1. Moon JH, Hyun MK, Lee JY, Shim JI, Kim TH, Choi HS, et al. 2018; Prevalence of thyroid nodules and their associated clinical parameters: a large-scale, multicenter-based health checkup study. Korean J Intern Med. 33(4):753–62. DOI:
10.3904/kjim.2015.273. PMID:
28859466. PMCID:
PMC6030422.
Article
2. Parsa AA, Gharib H. Parsa AA, Gharib H, editors. Epidemiology of thyroid nodules. Thyroid nodules. Springer;2018. p. 1–11.
Article
3. Gnarini VL, Brigante G, Della Valle E, Diazzi C, Madeo B, Carani C, et al. 2013; Very high prevalence of ultrasound thyroid scan abnormalities in healthy volunteers in Modena, Italy. J Endocrinol Invest. 36(9):722–8.
4. Oh EY, Jang HW, Lee JI, Kim HK, Kim SW, Chung JH. 2010; Prevalence of thyroid nodules and cancer detected by ultrasonography in healthy Korean adults: clinical features and the risk for malignancy. J Korean Thyroid Assoc. 3(2):142–8.
6. Hagag P, Strauss S, Weiss M. 1998; Role of ultrasound-guided fine-needle aspiration biopsy in evaluation of nonpalpable thyroid nodules. Thyroid. 8(11):989–95. DOI:
10.1089/thy.1998.8.989. PMID:
9848711.
Article
7. Kim WB, Kim TY, Kwon HS, Moon WJ, Lee JB, Choi YS, et al. 2007; Management guidelines for patients with thyroid nodules and thyroid cancer. J Korean Endocr Soc. 22(3):157–87. DOI:
10.3803/jkes.2007.22.3.157.
Article
8. Yi KH, Park YJ, Koong SS, Kim JH, Na DG, Ryu JS, et al. 2010; Revised Korean Thyroid Association management guidelines for patients with thyroid nodules and thyroid cancer. J Korean Thyroid Assoc. 3:65–96. DOI:
10.3803/EnM.2010.25.4.270.
Article
9. Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, et al. 2016; 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid. 26(1):1–133. DOI:
10.1089/thy.2015.0020. PMID:
26462967. PMCID:
PMC4739132.
Article
10. Yi KH, Lee EK, Kang H-C, Koh Y, Kim SW, Kim IJ, et al. 2016; 2016 Revised Korean Thyroid Association management guidelines for patients with thyroid nodules and thyroid cancer. Int J Thyroidol. 9(2):59–126. DOI:
10.11106/ijt.2016.9.2.59.
Article
11. Jung CK, Baek JH, Na DG, Oh YL, Yi KH, Kang HC. 2020; 2019 Practice guidelines for thyroid core needle biopsy: a report of the Clinical Practice Guidelines Development Committee of the Korean Thyroid Association. J Pathol Transl Med. 54(1):64–86. DOI:
10.4132/jptm.2019.12.04. PMID:
31964112. PMCID:
PMC6986975.
12. Ha EJ, Chung SR, Na DG, Ahn HS, Chung J, Lee JY, et al. 2021; 2021 Korean Thyroid Imaging Reporting and Data System and imaging-based management of thyroid nodules: Korean Society of Thyroid Radiology consensus statement and recommendations. Korean J Radiol. 22(12):2094–123. DOI:
10.3348/kjr.2021.0713. PMID:
34719893. PMCID:
PMC8628155.
Article
13. Kim JH, Baek JH, Lim HK, Ahn HS, Baek SM, Choi YJ, et al. 2018; 2017 Thyroid radiofrequency ablation guideline: Korean Society of Thyroid Radiology. Korean J Radiol. 19(4):632–55. DOI:
10.3348/kjr.2018.19.4.632. PMID:
29962870. PMCID:
PMC6005940.
14. Orloff LA, Noel JE, Stack BC Jr, Russell MD, Angelos P, Baek JH, et al. 2022; Radiofrequency ablation and related ultrasoundguided ablation technologies for treatment of benign and malignant thyroid disease: an international multidisciplinary consensus statement of the American Head and Neck Society Endocrine Surgery Section with the Asia Pacific Society of Thyroid Surgery, Associazione Medici Endocrinologi, British Association of Endocrine and Thyroid Surgeons, European Thyroid Association, Italian Society of Endocrine Surgery Units, Korean Society of Thyroid Radiology, Latin American Thyroid Society, and Thyroid Nodules Therapies Association. Head Neck. 44(3):633–60. DOI:
10.1002/hed.26960. PMID:
34939714.
15. Bibbins-Domingo K, Grossman DC, Curry SJ, Barry MJ, Davidson KW, et al. US Preventive Services Task Force. 2017; Screening for thyroid cancer: US Preventive Services Task Force Recommendation Statement. JAMA. 317(18):1882–7. DOI:
10.1001/jama.2017.4011. PMID:
28492905.
16. Curtis RE, Rowlings PA, Deeg HJ, Shriner DA, Socie G, Travis LB, et al. 1997; Solid cancers after bone marrow transplantation. N Engl J Med. 336(13):897–904. DOI:
10.1056/NEJM199703273361301. PMID:
9070469.
17. Atlas G, Farrell S, Zacharin M. 2022; Secondary thyroid carcinoma in survivors of childhood cancer: a need to revise current screening recommendations. Clin Endocrinol (Oxf). 97(1):137–9. DOI:
10.1111/cen.14746. PMID:
35460104. PMCID:
PMC9544539.
Article
18. Pacini F, Vorontsova T, Demidchik EP, Molinaro E, Agate L, Romei C, et al. 1997; Post-Chernobyl thyroid carcinoma in Belarus children and adolescents: comparison with naturally occurring thyroid carcinoma in Italy and France. J Clin Endocrinol Metab. 82(11):3563–9. DOI:
10.1210/jc.82.11.3563. PMID:
9360507.
Article
19. Cahoon EK, Nadyrov EA, Polyanskaya ON, Yauseyenka VV, Veyalkin IV, Yeudachkova TI, et al. 2017; Risk of thyroid nodules in residents of belarus exposed to Chernobyl fallout as children and adolescents. J Clin Endocrinol Metab. 102(7):2207–17. DOI:
10.1210/jc.2016-3842. PMID:
28368520. PMCID:
PMC5505199.
Article
21. Wells SA Jr, Asa SL, Dralle H, Elisei R, Evans DB, Gagel RF, et al. 2015; Revised American Thyroid Association guidelines for the management of medullary thyroid carcinoma. Thyroid. 25(6):567–610. DOI:
10.1089/thy.2014.0335. PMID:
25810047. PMCID:
PMC4490627.
Article
23. Wang X, Cheng W, Li J, Su A, Wei T, Liu F, et al. 2015; Endocrine tumours: familial nonmedullary thyroid carcinoma is a more aggressive disease: a systematic review and meta-analysis. Eur J Endocrinol. 172(6):R253–62. DOI:
10.1530/EJE-14-0960. PMID:
25637073.
Article
24. Lee YM, Yoon JH, Yi O, Sung TY, Chung KW, Kim WB, et al. 2014; Familial history of non-medullary thyroid cancer is an independent prognostic factor for tumor recurrence in younger patients with conventional papillary thyroid carcinoma. J Surg Oncol. 109(2):168–73. DOI:
10.1002/jso.23447. PMID:
24132694.
Article
25. Park YJ, Ahn HY, Choi HS, Kim KW, Park DJ, Cho BY. 2012; The long-term outcomes of the second generation of familial nonmedullary thyroid carcinoma are more aggressive than sporadic cases. Thyroid. 22(4):356–62. DOI:
10.1089/thy.2011.0163. PMID:
22280228. PMCID:
PMC3315159.
Article
26. Klubo-Gwiezdzinska J, Yang L, Merkel R, Patel D, Nilubol N, Merino MJ, et al. 2017; Results of screening in familial non-medullary thyroid cancer. Thyroid. 27(8):1017–24. DOI:
10.1089/thy.2016.0668. PMID:
28657510. PMCID:
PMC5564020.
Article
27. Rios A, Rodriguez JM, Navas D, Cepero A, Torregrosa NM, Balsalobre MD, et al. 2016; Family screening in familial papillary carcinoma: the early detection of thyroid disease. Ann Surg Oncol. 23(8):2564–70. DOI:
10.1245/s10434-016-5149-8. PMID:
27020589.
Article
28. Lee YM, Jeon MJ, Kim WW, Chung KW, Baek JH, Shong YK, et al. 2021; Comparison between familial and sporadic non-medullary thyroid carcinoma: a retrospective individual risk factor-matched cohort study. Ann Surg Oncol. 28(3):1722–30. DOI:
10.1245/s10434-020-09025-0. PMID:
32803550.
Article
29. Francis GL, Waguespack SG, Bauer AJ, Angelos P, Benvenga S, Cerutti JM, et al. 2015; Management guidelines for children with thyroid nodules and differentiated thyroid cancer. Thyroid. 25(7):716–59. DOI:
10.1089/thy.2014.0460. PMID:
25900731. PMCID:
PMC4854274.
Article
30. Pazaitou-Panayiotou K, Michalakis K, Paschke R. 2012; Thyroid cancer in patients with hyperthyroidism. Horm Metab Res. 44(4):255–62. DOI:
10.1055/s-0031-1299741. PMID:
22334393.
Article
31. Song Y, Fu L, Wang P, Sun N, Qiu X, Li J, et al. 2020; Effect of Graves' disease on the prognosis of differentiated thyroid carcinoma: a meta-analysis. Endocrine. 67(3):516–25. DOI:
10.1007/s12020-019-02111-8. PMID:
31637658.
32. Hu X, Wang X, Liang Y, Chen X, Zhou S, Fei W, et al. 2022; Cancer risk in Hashimoto's thyroiditis: a systematic review and meta-analysis. Front Endocrinol (Lausanne). 13:937871. DOI:
10.3389/fendo.2022.937871. PMID:
35903279. PMCID:
PMC9318815.
Article
33. Moon S, Chung HS, Yu JM, Yoo HJ, Park JH, Kim DS, et al. 2018; Associations between Hashimoto thyroiditis and clinical outcomes of papillary thyroid cancer: a meta-analysis of observational studies. Endocrinol Metab (Seoul). 33(4):473–84. DOI:
10.3803/EnM.2018.33.4.473. PMID:
30513562. PMCID:
PMC6279904.
Article
36. Bentrem DJ, Angelos P, Talamonti MS, Nayar R. 2002; Is preoperative investigation of the thyroid justified in patients undergoing parathyroidectomy for hyperparathyroidism? Thyroid. 12(12):1109–12. DOI:
10.1089/105072502321085207. PMID:
12593724.
Article
37. Cetin K, Sikar HE, Temizkan S, Ofluoglu CB, Ozderya A, Aydin K, et al. 2019; Does primary hyperparathyroidism have an association with thyroid papillary cancer? A retrospective cohort study. World J Surg. 43(5):1243–8. DOI:
10.1007/s00268-019-04920-4. PMID:
30680499.
Article
38. Haddy N, Andriamboavonjy T, Paoletti C, Dondon MG, Mousannif A, Shamsaldin A, et al. 2009; Thyroid adenomas and carcinomas following radiotherapy for a hemangioma during infancy. Radiother Oncol. 93(2):377–82. DOI:
10.1016/j.radonc.2009.05.011. PMID:
19515442.
Article
39. Gatta G, Botta L, Rossi S, Aareleid T, Bielska-Lasota M, Clavel J, et al. Childhood cancer survival in Europe 1999-2007: results of EUROCARE-5--a population-based study. Lancet Oncol. 2014; 15(1):35–47. DOI:
10.1016/S1470-2045(13)70548-5. PMID:
24314616.
Article
40. Lorenz E, Scholz-Kreisel P, Baaken D, Pokora R, Blettner M. 2018; Radiotherapy for childhood cancer and subsequent thyroid cancer risk: a systematic review. Eur J Epidemiol. 33(12):1139–62. DOI:
10.1007/s10654-018-0467-8. PMID:
30511135.
41. Veiga LH, Lubin JH, Anderson H, de Vathaire F, Tucker M, Bhatti P, et al. 2012; A pooled analysis of thyroid cancer incidence following radiotherapy for childhood cancer. Radiat Res. 178(4):365–76. DOI:
10.1667/RR2889.1. PMID:
22857014. PMCID:
PMC3488851.
Article
42. Rubino C, Adjadj E, Guerin S, Guibout C, Shamsaldin A, Dondon MG, et al. 2003; Long-term risk of second malignant neoplasms after neuroblastoma in childhood: role of treatment. Int J Cancer. 107(5):791–6. DOI:
10.1002/ijc.11455. PMID:
14566829.
43. Finke I, Scholz-Kreisel P, Hennewig U, Blettner M, Spix C. 2015; Radiotherapy and subsequent thyroid cancer in German childhood cancer survivors: a nested case-control study. Radiat Oncol. 10:219. DOI:
10.1186/s13014-015-0521-6. PMID:
26517987. PMCID:
PMC4628297.
Article
44. Clement SC, Kremer LCM, Verburg FA, Simmons JH, Goldfarb M, Peeters RP, et al. 2018; Balancing the benefits and harms of thyroid cancer surveillance in survivors of childhood, adolescent and young adult cancer: recommendations from the international Late Effects of Childhood Cancer Guideline Harmonization Group in collaboration with the PanCareSurFup Consortium. Cancer Treat Rev. 63:28–39. DOI:
10.1016/j.ctrv.2017.11.005. PMID:
29202445.
45. Brander A, Viikinkoski P, Tuuhea J, Voutilainen L, Kivisaari L. 1992; Clinical versus ultrasound examination of the thyroid gland in common clinical practice. J Clin Ultrasound. 20(1):37–42. DOI:
10.1002/jcu.1870200107. PMID:
1309541.
47. Na DG, Baek JH, Jung SL, Kim JH, Sung JY, Kim KS, et al. 2017; Core needle biopsy of the thyroid: 2016 consensus statement and recommendations from Korean Society of Thyroid Radiology. Korean J Radiol. 18(1):217–37. DOI:
10.3348/kjr.2017.18.1.217. PMID:
28096731. PMCID:
PMC5240493.
Article
49. Lau LW, Ghaznavi S, Frolkis AD, Stephenson A, Robertson HL, Rabi DM, et al. 2021; Malignancy risk of hyperfunctioning thyroid nodules compared with non-toxic nodules: systematic review and a meta-analysis. Thyroid Res. 14(1):3. DOI:
10.1186/s13044-021-00094-1. PMID:
33632297. PMCID:
PMC7905613.
Article
51. Suh I, Vriens MR, Guerrero MA, Griffin A, Shen WT, Duh QY, et al. 2010; Serum thyroglobulin is a poor diagnostic biomarker of malignancy in follicular and Hurthle-cell neoplasms of the thyroid. Am J Surg. 200(1):41–6. DOI:
10.1016/j.amjsurg.2009.08.030. PMID:
20637335.
52. Lee EK, Chung KW, Min HS, Kim TS, Kim TH, Ryu JS, et al. 2012; Preoperative serum thyroglobulin as a useful predictive marker to differentiate follicular thyroid cancer from benign nodules in indeterminate nodules. J Korean Med Sci. 27(9):1014–8. DOI:
10.3346/jkms.2012.27.9.1014. PMID:
22969246. PMCID:
PMC3429817.
53. Youn I, Sung JM, Kim EK, Kwak JY. 2014; Serum thyroglobulin adds no additional value to ultrasonographic features in a thyroid malignancy. Ultrasound Q. 30(4):287–90. DOI:
10.1097/RUQ.0000000000000056. PMID:
25415866.
54. Patell R, Mikhael A, Tabet M, Bena J, Berber E, Nasr C. 2018; Assessing the utility of preoperative serum thyroglobulin in differentiated thyroid cancer: a retrospective cohort study. Endocrine. 61(3):506–10. DOI:
10.1007/s12020-018-1643-z. PMID:
29948933.
Article
55. Verbeek HH, de Groot JWB, Sluiter WJ, Muller Kobold AC, van den Heuvel ER, Plukker JT, et al. 2020; Calcitonin testing for detection of medullary thyroid cancer in people with thyroid nodules. Cochrane Database Syst Rev. 3(3):CD010159. DOI:
10.1002/14651858.CD010159.pub2. PMID:
32176812.
Article
56. de Groot JW, Plukker JT, Wolffenbuttel BH, Wiggers T, Sluiter WJ, Links TP. 2006; Determinants of life expectancy in medullary thyroid cancer: age does not matter. Clin Endocrinol (Oxf). 65(6):729–36. DOI:
10.1111/j.1365-2265.2006.02659.x. PMID:
17121523.
Article
57. Elisei R, Bottici V, Luchetti F, Di Coscio G, Romei C, Grasso L, et al. 2004; Impact of routine measurement of serum calcitonin on the diagnosis and outcome of medullary thyroid cancer: experience in 10,864 patients with nodular thyroid disorders. J Clin Endocrinol Metab. 89(1):163–8. DOI:
10.1210/jc.2003-030550. PMID:
14715844.
58. Hahm JR, Lee MS, Min YK, Lee MK, Kim KW, Nam SJ, et al. 2001; Routine measurement of serum calcitonin is useful for early detection of medullary thyroid carcinoma in patients with nodular thyroid diseases. Thyroid. 11(1):73–80. DOI:
10.1089/10507250150500694. PMID:
11272100.
59. Niccoli P, Wion-Barbot N, Caron P, Henry JF, de Micco C, Saint Andre JP, et al. 1997; Interest of routine measurement of serum calcitonin: study in a large series of thyroidectomized patients. The French Medullary Study Group. J Clin Endocrinol Metab. 82(2):338–41. DOI:
10.1210/jcem.82.2.3737. PMID:
9024213.
60. Costante G, Meringolo D, Durante C, Bianchi D, Nocera M, Tumino S, et al. 2007; Predictive value of serum calcitonin levels for preoperative diagnosis of medullary thyroid carcinoma in a cohort of 5817 consecutive patients with thyroid nodules. J Clin Endocrinol Metab. 92(2):450–5. DOI:
10.1210/jc.2006-1590. PMID:
17119000.
Article
61. Chambon G, Alovisetti C, Idoux-Louche C, Reynaud C, Rodier M, Guedj AM, et al. 2011; The use of preoperative routine measurement of basal serum thyrocalcitonin in candidates for thyroidectomy due to nodular thyroid disorders: results from 2733 consecutive patients. J Clin Endocrinol Metab. 96(1):75–81. DOI:
10.1210/jc.2010-0162. PMID:
20881258.
Article
62. Colombo C, Verga U, Mian C, Ferrero S, Perrino M, Vicentini L, et al. 2012; Comparison of calcium and pentagastrin tests for the diagnosis and follow-up of medullary thyroid cancer. J Clin Endocrinol Metab. 97(3):905–13. DOI:
10.1210/jc.2011-2033. PMID:
22170709.
Article
63. Vardarli I, Weber M, Weidemann F, Fuhrer D, Herrmann K, Gorges R. 2021; Diagnostic accuracy of routine calcitonin measurement for the detection of medullary thyroid carcinoma in the management of patients with nodular thyroid disease: a meta-analysis. Endocr Connect. 10(3):358–70. DOI:
10.1530/EC-21-0030. PMID:
33638941. PMCID:
PMC8052568.
Article
64. Cheung K, Roman SA, Wang TS, Walker HD, Sosa JA. 2008; Calcitonin measurement in the evaluation of thyroid nodules in the United States: a cost-effectiveness and decision analysis. J Clin Endocrinol Metab. 93(6):2173–80. DOI:
10.1210/jc.2007-2496. PMID:
18364376.
Article
65. Karga H, Giagourta I, Papaioannou G, Doumouchtsis K, Polymeris A, Thanou S, et al. 2011; Changes in risk factors and Tumor Node Metastasis stage of sporadic medullary thyroid carcinoma over 41 years, before and after the routine measurements of serum calcitonin. Metabolism. 60(5):604–8. DOI:
10.1016/j.metabol.2010.06.004. PMID:
20667564.
Article
66. Weber T, Poplawski A, Vorlander C, Dotzenrath C, Ringelband R, Schabram J, et al. 2022; Preoperative calcitonin testing improves the diagnosis of medullary thyroid carcinoma in female and male patients. Eur J Endocrinol. 186(2):223–31. DOI:
10.1530/EJE-21-1015. PMID:
34871180.
Article
67. Jassal K, Ravintharan N, Prabhakaran S, Grodski S, Serpell JW, Lee JC. 2022; Preoperative serum calcitonin may improve initial surgery for medullary thyroid cancer in patients with indeterminate cytology. ANZ J Surg. 92(6):1428–33. DOI:
10.1111/ans.17690. PMID:
35412008. PMCID:
PMC9321997.
Article
68. Do Cao C, Haissaguerre M, Lussey-Lepoutre C, Donatini G, Raverot V, Russ G. 2022; SFE-AFCE-SFMN 2022 consensus on the management of thyroid nodules: initial work-up for thyroid nodules. Ann Endocrinol (Paris). 83(6):380–8. DOI:
10.1016/j.ando.2022.10.009. PMID:
36280193.
Article
69. Dralle H, Musholt TJ, Schabram J, Steinmuller T, Frilling A, Simon D, et al. 2013; German Association of Endocrine Surgeons practice guideline for the surgical management of malignant thyroid tumors. Langenbecks Arch Surg. 398(3):347–75. DOI:
10.1007/s00423-013-1057-6. PMID:
23456424.
Article
70. Chen W, Parsons M, Torigian DA, Zhuang H, Alavi A. 2009; Evaluation of thyroid FDG uptake incidentally identified on FDG-PET/CT imaging. Nucl Med Commun. 30(3):240–4. DOI:
10.1097/MNM.0b013e328324b431. PMID:
19262287.
Article
71. Nishimori H, Tabah R, Hickeson M, How J. 2011; Incidental thyroid "PETomas": clinical significance and novel description of the self-resolving variant of focal FDG-PET thyroid uptake. Can J Surg. 54(2):83–8. DOI:
10.1503/cjs.023209. PMID:
21251421. PMCID:
PMC3116704.
Article
72. Soelberg KK, Bonnema SJ, Brix TH, Hegedus L. 2012; Risk of malignancy in thyroid incidentalomas detected by 18F-fluorodeoxyglucose positron emission tomography: a systematic review. Thyroid. 22(9):918–25. DOI:
10.1089/thy.2012.0005. PMID:
22827552.
Article
73. Chung SR, Choi YJ, Suh CH, Kim HJ, Lee JJ, Kim WG, et al. 2018; Thyroid incidentalomas detected on (18)F-fluorodeoxyglucose positron emission tomography with computed tomography: malignant risk stratification and management plan. Thyroid. 28(6):762–8. DOI:
10.1089/thy.2017.0560. PMID:
29759033.
Article
74. Felder GJ, Naeem M, Shady W, Shetty AS, Fraum TJ, Itani M. 2021; Risk stratification of (18)F-fluorodeoxyglucose-avid thyroid nodules based on ACR Thyroid Imaging Reporting and Data System. J Am Coll Radiol. 18(3 Pt A):388–94. DOI:
10.1016/j.jacr.2020.08.021. PMID:
33137296.
75. de Leijer JF, Metman MJH, van der Hoorn A, Brouwers AH, Kruijff S, van Hemel BM, et al. 2021; Focal thyroid incidentalomas on (18)F-FDG PET/CT: a systematic review and meta-analysis on prevalence, risk of malignancy and inconclusive fine needle aspiration. Front Endocrinol (Lausanne). 12:723394. DOI:
10.3389/fendo.2021.723394. PMID:
34744999. PMCID:
PMC8564374.
Article
76. Kim PH, Suh CH, Baek JH, Chung SR, Choi YJ, Lee JH. 2020; Diagnostic performance of four ultrasound risk stratification systems: a systematic review and meta-analysis. Thyroid. 30(8):1159–68. DOI:
10.1089/thy.2019.0812. PMID:
32303153.
Article
77. Joo L, Lee MK, Lee JY, Ha EJ, Na DG. 2023; Diagnostic performance of ultrasound-based risk stratification systems for thyroid nodules: a systematic review and meta-analysis. Endocrinol Metab (Seoul). 38(1):117–28. DOI:
10.3803/EnM.2023.1670. PMID:
36891658. PMCID:
PMC10008666.
Article
78. Gharib H, Papini E, Garber JR, Duick DS, Harrell RM, Hegedus L, et al. 2016; American Association of Clinical Endocrinologists, American College of Endocrinology, and Associazione Medici Endocrinologi medical guidelines for clinical practice for the diagnosis and management of thyroid nodules--2016 Update. Endocr Pract. 22(5):622–39. DOI:
10.4158/EP161208.GL. PMID:
27167915.
79. Shin JH, Baek JH, Chung J, Ha EJ, Kim JH, Lee YH, et al. 2016; Ultrasonography diagnosis and imaging-based management of thyroid nodules: revised Korean Society of Thyroid Radiology consensus statement and recommendations. Korean J Radiol. 17(3):370–95. DOI:
10.3348/kjr.2016.17.3.370. PMID:
27134526. PMCID:
PMC4842857.
Article
80. Tessler FN, Middleton WD, Grant EG, Hoang JK, Berland LL, Teefey SA, et al. 2017; ACR Thyroid Imaging, Reporting and Data System (TI-RADS): white paper of the ACR TI-RADS Committee. J Am Coll Radiol. 14(5):587–95. DOI:
10.1016/j.jacr.2017.01.046. PMID:
28372962.
Article
81. Russ G, Bonnema SJ, Erdogan MF, Durante C, Ngu R, Leenhardt L. 2017; European Thyroid Association guidelines for ultrasound malignancy risk stratification of thyroid nodules in adults: the EU-TIRADS. Eur Thyroid J. 6(5):225–37. DOI:
10.1159/000478927. PMID:
29167761. PMCID:
PMC5652895.
Article
82. Zhou J, Yin L, Wei X, Zhang S, Song Y, Luo B, et al. 2020; 2020 Chinese guidelines for ultrasound malignancy risk stratification of thyroid nodules: the C-TIRADS. Endocrine. 70(2):256–79. DOI:
10.1007/s12020-020-02441-y. PMID:
32827126.
83. Moon WJ, Jung SL, Lee JH, Na DG, Baek JH, Lee YH, et al. 2008; Benign and malignant thyroid nodules: US differentiation--multicenter retrospective study. Radiology. 247(3):762–70. DOI:
10.1148/radiol.2473070944. PMID:
18403624.
84. Brito JP, Gionfriddo MR, Al Nofal A, Boehmer KR, Leppin AL, Reading C, et al. 2014; The accuracy of thyroid nodule ultrasound to predict thyroid cancer: systematic review and meta-analysis. J Clin Endocrinol Metab. 99(4):1253–63. DOI:
10.1210/jc.2013-2928. PMID:
24276450. PMCID:
PMC3973781.
Article
85. Campanella P, Ianni F, Rota CA, Corsello SM, Pontecorvi A. 2014; Quantification of cancer risk of each clinical and ultra-sonographic suspicious feature of thyroid nodules: a systematic review and meta-analysis. Eur J Endocrinol. 170(5):R203–11. DOI:
10.1530/EJE-13-0995. PMID:
24536085.
86. Remonti LR, Kramer CK, Leitao CB, Pinto LC, Gross JL. 2015; Thyroid ultrasound features and risk of carcinoma: a systematic review and meta-analysis of observational studies. Thyroid. 25(5):538–50. DOI:
10.1089/thy.2014.0353. PMID:
25747526. PMCID:
PMC4447137.
Article
87. Na DG, Baek JH, Sung JY, Kim JH, Kim JK, Choi YJ, et al. 2016; Thyroid Imaging Reporting and Data System risk stratification of thyroid nodules: categorization based on solidity and echogenicity. Thyroid. 26(4):562–72. DOI:
10.1089/thy.2015.0460. PMID:
26756476.
Article
88. Sugitani I, Ito Y, Takeuchi D, Nakayama H, Masaki C, Shindo H, et al. 2021; Indications and strategy for active surveillance of adult low-risk papillary thyroid microcarcinoma: consensus statements from the Japan Association of Endocrine Surgery Task Force on management for papillary thyroid microcarcinoma. Thyroid. 31(2):183–92. DOI:
10.1089/thy.2020.0330. PMID:
33023426. PMCID:
PMC7891203.
Article
89. Suzuki S. 2016; Childhood and adolescent thyroid cancer in Fukushima after the Fukushima Daiichi Nuclear Power Plant accident: 5 years on. Clin Oncol (R Coll Radiol). 28(4):263–71. DOI:
10.1016/j.clon.2015.12.027. PMID:
26822892.
Article
90. Ali SZ, Cibas ES. 2010. The bethesda system for reporting thyroid cytopathology. Springer;New York:
91. Ali SZ, Cibas ES. 2018. The bethesda system for reporting thyroid cytopathology. 2nd ed. Springer;New York:
92. Ali SZ, Baloch ZW, Cochand-Priollet B, Schmitt FC, Vielh P, VanderLaan PA. The 2023 bethesda system for reporting thyroid cytopathology. J Am Soc Cytopathol. In press 2023.
93. Ali SZ, Baloch ZW, Cochand-Priollet B, Schmitt FC, Vielh P, VanderLaan PA. The 2023 bethesda system for reporting thyroid cytopathology. Thyroid In press 2023.
94. Valderrabano P, Khazai L, Thompson ZJ, Sharpe SC, Tarasova VD, Otto KJ, et al. 2018; Cancer risk associated with nuclear atypia in cytologically indeterminate thyroid nodules: a systematic review and meta-analysis. Thyroid. 28(2):210–9. DOI:
10.1089/thy.2017.0419. PMID:
29160163. PMCID:
PMC7869885.
Article
95. Joo L, Na DG, Kim JH, Seo H. 2022; Comparison of core needle biopsy and repeat fine-needle aspiration in avoiding diagnostic surgery for thyroid nodules initially diagnosed as atypia/follicular lesion of undetermined significance. Korean J Radiol. 23(2):280–8. DOI:
10.3348/kjr.2021.0619. PMID:
35029081. PMCID:
PMC8814697.
Article
96. Kim K, Bae JS, Kim JS, Jung SL, Jung CK. 2022; Diagnostic performance of thyroid core needle biopsy using the revised reporting system: comparison with fine needle aspiration cytology. Endocrinol Metab (Seoul). 37(1):159–69. DOI:
10.3803/EnM.2021.1299. PMID:
35255608. PMCID:
PMC8901962.
Article
97. Park JY, Yi SY, Baek SH, Lee YH, Kwon HJ, Park HJ. 2022; Diagnostic efficacy, performance and safety of side-cut core needle biopsy for thyroid nodules: comparison of automated and semi-automated biopsy needles. Endocrine. 76(2):341–8. DOI:
10.1007/s12020-022-02980-6. PMID:
35032314.
98. Ahn HS, Youn I, Na DG, Kim SJ, Lee MY. 2021; Diagnostic performance of core needle biopsy as a first-line diagnostic tool for thyroid nodules according to ultrasound patterns: comparison with fine needle aspiration using propensity score matching analysis. Clin Endocrinol (Oxf). 94(3):494–503. DOI:
10.1111/cen.14321. PMID:
32869866.
99. Son HM, Kim JH, Kim SC, Yoo RE, Bae JM, Seo H, et al. 2020; Distribution and malignancy risk of six categories of the pathology reporting system for thyroid core-needle biopsy in 1,216 consecutive thyroid nodules. Ultrasonography. 39(2):159–65. DOI:
10.14366/usg.19056. PMID:
32105436. PMCID:
PMC7065982.
Article
100. Chung SR, Baek JH, Lee JH, Lee YM, Sung TY, Chung KW, et al. 2019; Risk of malignancy according to the sub-classification of atypia of undetermined significance and suspicious follicular neoplasm categories in thyroid core needle biopsies. Endocr Pathol. 30(2):146–54. DOI:
10.1007/s12022-019-9577-4. PMID:
31044350.
101. Na HY, Woo JW, Moon JH, Choi JY, Jeong WJ, Kim YK, et al. 2019; Preoperative diagnostic categories of noninvasive follicular thyroid neoplasm with papillary-like nuclear features in thyroid core needle biopsy and its impact on risk of malignancy. Endocr Pathol. 30(4):329–39. DOI:
10.1007/s12022-019-09590-5. PMID:
31605276.
102. Xiong Y, Yan L, Nong L, Zheng Y, Li T. 2019; Pathological diagnosis of thyroid nodules based on core needle biopsies: comparative study between core needle biopsies and resected specimens in 578 cases. Diagn Pathol. 14(1):10. DOI:
10.1186/s13000-019-0786-4. PMID:
30711008. PMCID:
PMC6359785.
103. Ahn HS, Seo M, Ha SM, Kim HS. 2018; Comparison of the diagnostic efficacy of ultrasound-guided core needle biopsy with 18- versus 20-gauge needles for thyroid nodules. J Ultrasound Med. 37(11):2565–74. DOI:
10.1002/jum.14614. PMID:
29575135.
Article
104. Choe J, Baek JH, Park HS, Choi YJ, Lee JH. 2018; Core needle biopsy of thyroid nodules: outcomes and safety from a large single-center single-operator study. Acta Radiol. 59(8):924–31. DOI:
10.1177/0284185117741916. PMID:
29137498.
105. Choe JY, Kwak Y, Kim M, Chung YR, Kim HJ, Kim YK, et al. 2018; Utility of a formatted pathologic reporting system in thyroid core needle biopsy: a validation study of 1998 consecutive cases. Clin Endocrinol (Oxf). 88(1):96–104. DOI:
10.1111/cen.13397. PMID:
28618022.
106. Hong MJ, Na DG, Kim SJ, Kim DS. 2018; Role of core needle biopsy as a first-line diagnostic tool for thyroid nodules: a retrospective cohort study. Ultrasonography. 37(3):244–53. DOI:
10.14366/usg.17041. PMID:
29113031. PMCID:
PMC6044216.
Article
107. Chung SR, Baek JH, Park HS, Choi YJ, Sung TY, Song DE, et al. 2017; Ultrasound-pathology discordant nodules on core-needle biopsy: malignancy risk and management strategy. Thyroid. 27(5):707–13. DOI:
10.1089/thy.2016.0462. PMID:
28326900.
Article
108. Kim HC, Kim YJ, Han HY, Yi JM, Baek JH, Park SY, et al. 2017; First-line use of core needle biopsy for high-yield preliminary diagnosis of thyroid nodules. AJNR Am J Neuroradiol. 38(2):357–63. DOI:
10.3174/ajnr.A5007. PMID:
27932508. PMCID:
PMC7963827.
109. Suh CH, Baek JH, Choi YJ, Kim TY, Sung TY, Song DE, et al. 2017; Efficacy and safety of core-needle biopsy in initially detected thyroid nodules via propensity score analysis. Sci Rep. 7(1):8242. DOI:
10.1038/s41598-017-07924-z. PMID:
28811482. PMCID:
PMC5557918.
110. Suh CH, Baek JH, Lee JH, Choi YJ, Kim JK, Sung TY, et al. 2016; The role of core-needle biopsy as a first-line diagnostic tool for initially detected thyroid nodules. Thyroid. 26(3):395–403. DOI:
10.1089/thy.2015.0404. PMID:
26651390.
Article
111. Suh CH, Baek JH, Lee JH, Choi YJ, Kim KW, Lee J, et al. 2016; The role of core-needle biopsy in the diagnosis of thyroid malignancy in 4580 patients with 4746 thyroid nodules: a systematic review and meta-analysis. Endocrine. 54(2):315–28. DOI:
10.1007/s12020-016-0991-9. PMID:
27220941.
112. Kim YH, Kwon HJ, Kim EK, Kwak JY, Moon HJ, Yoon JH. 2015; Applying ultrasound-guided core needle biopsy for diagnosis of thyroid masses: preliminary results from a single institution. J Ultrasound Med. 34(10):1801–8. DOI:
10.7863/ultra.15.14.12028. PMID:
26324755.
113. Ha EJ, Baek JH, Lee JH, Kim JK, Kim JK, Lim HK, et al. 2014; Core needle biopsy can minimise the non-diagnostic results and need for diagnostic surgery in patients with calcified thyroid nodules. Eur Radiol. 24(6):1403–9. DOI:
10.1007/s00330-014-3123-z. PMID:
24604217.
Article
114. Trimboli P, Nasrollah N, Guidobaldi L, Taccogna S, Cicciarella Modica DD, Amendola S, et al. 2014; The use of core needle biopsy as first-line in diagnosis of thyroid nodules reduces false negative and inconclusive data reported by fine-needle aspiration. World J Surg Oncol. 12:61. DOI:
10.1186/1477-7819-12-61. PMID:
24661377. PMCID:
PMC3987871.
115. Ha EJ, Baek JH, Lee JH, Song DE, Kim JK, Shong YK, et al. 2013; Sonographically suspicious thyroid nodules with initially benign cytologic results: the role of a core needle biopsy. Thyroid. 23(6):703–8. DOI:
10.1089/thy.2012.0426. PMID:
23544697.
116. Sung JY, Na DG, Kim KS, Yoo H, Lee H, Kim JH, et al. 2012; Diagnostic accuracy of fine-needle aspiration versus core-needle biopsy for the diagnosis of thyroid malignancy in a clinical cohort. Eur Radiol. 22(7):1564–72. DOI:
10.1007/s00330-012-2405-6. PMID:
22415411.
117. Crothers BA, Henry MR, Firat P, Frates MC, Rossi ED. Ali SZ, Cibas ES, editors. 2018. Nondiagnostic/unsatisfactory. The Bethesda system for reporting thyroid cytopathology. New York: Springer;p. 7–18.
118. Wu HH, Rose C, Elsheikh TM. 2012; The Bethesda system for reporting thyroid cytopathology: an experience of 1,382 cases in a community practice setting with the implication for risk of neoplasm and risk of malignancy. Diagn Cytopathol. 40(5):399–403. DOI:
10.1002/dc.21754. PMID:
21681976.
Article
119. Layfield LJ, Abrams J, Cochand-Priollet B, Evans D, Gharib H, Greenspan F, et al. 2008; Post-thyroid FNA testing and treatment options: a synopsis of the National Cancer Institute Thyroid Fine Needle Aspiration State of the Science Conference. Diagn Cytopathol. 36(6):442–8. DOI:
10.1002/dc.20832. PMID:
18478610.
Article
120. Singh RS, Wang HH. 2011; Timing of repeat thyroid fine-needle aspiration in the management of thyroid nodules. Acta Cytol. 55(6):544–8. DOI:
10.1159/000334214. PMID:
22156464.
Article
121. Lubitz CC, Nagarkatti SS, Faquin WC, Samir AE, Hassan MC, Barbesino G, et al. 2012; Diagnostic yield of nondiagnostic thyroid nodules is not altered by timing of repeat biopsy. Thyroid. 22(6):590–4. DOI:
10.1089/thy.2011.0442. PMID:
22667452. PMCID:
PMC3733136.
122. Valerio E, Pastorello RG, Calsavara V, Porfirio MM, Engelman GG, Francisco Dalcin J, et al. 2020; Should we wait 3 months for a repeat aspiration in non-diagnostic/indeterminate thyroid nodules? A cancer centre experience. Cytopathology. 31(6):525–32. DOI:
10.1111/cyt.12887. PMID:
32656878.
123. Orija IB, Pineyro M, Biscotti C, Reddy SS, Hamrahian AH. 2007; Value of repeating a nondiagnostic thyroid fine-needle aspiration biopsy. Endocr Pract. 13(7):735–42. DOI:
10.4158/EP.13.7.735. PMID:
18194930.
124. Alexander EK, Heering JP, Benson CB, Frates MC, Doubilet PM, Cibas ES, et al. 2002; Assessment of nondiagnostic ultrasound-guided fine needle aspirations of thyroid nodules. J Clin Endocrinol Metab. 87(11):4924–7. DOI:
10.1210/jc.2002-020865. PMID:
12414851.
Article
125. Choi YS, Hong SW, Kwak JY, Moon HJ, Kim EK. 2012; Clinical and ultrasonographic findings affecting nondiagnostic results upon the second fine needle aspiration for thyroid nodules. Ann Surg Oncol. 19(7):2304–9. DOI:
10.1245/s10434-012-2288-4. PMID:
22395996.
Article
126. Na DG, Kim JH, Sung JY, Baek JH, Jung KC, Lee H, et al. 2012; Core-needle biopsy is more useful than repeat fine-needle aspiration in thyroid nodules read as nondiagnostic or atypia of undetermined significance by the Bethesda system for reporting thyroid cytopathology. Thyroid. 22(5):468–75. DOI:
10.1089/thy.2011.0185. PMID:
22304417.
Article
127. Lee SH, Kim MH, Bae JS, Lim DJ, Jung SL, Jung CK. 2014; Clinical outcomes in patients with non-diagnostic thyroid fine needle aspiration cytology: usefulness of the thyroid core needle biopsy. Ann Surg Oncol. 21(6):1870–7. DOI:
10.1245/s10434-013-3365-z. PMID:
24526545.
Article
128. Choi SH, Baek JH, Lee JH, Choi YJ, Hong MJ, Song DE, et al. 2014; Thyroid nodules with initially non-diagnostic, fine-needle aspiration results: comparison of core-needle biopsy and repeated fine-needle aspiration. Eur Radiol. 24(11):2819–26. DOI:
10.1007/s00330-014-3325-4. PMID:
25038860.
Article
129. Jung SM, Koo HR, Jang KS, Chung MS, Song CM, Ji YB, et al. 2021; Comparison of core-needle biopsy and repeat fine-needle aspiration for thyroid nodules with inconclusive initial cytology. Eur Arch Otorhinolaryngol. 278(8):3019–25. DOI:
10.1007/s00405-020-06473-y. PMID:
33196875.
Article
130. Moon HJ, Kwak JY, Choi YS, Kim EK. 2012; How to manage thyroid nodules with two consecutive non-diagnostic results on ultrasonography-guided fine-needle aspiration. World J Surg. 36(3):586–92. DOI:
10.1007/s00268-011-1397-8. PMID:
22228400.
Article
131. Vuong HG, Chung DGB, Ngo LM, Bui TQ, Hassell L, Jung CK, et al. 2021; The use of the bethesda system for reporting thyroid cytopathology in pediatric thyroid nodules: a meta-analysis. Thyroid. 31(8):1203–11. DOI:
10.1089/thy.2020.0702. PMID:
33504264.
Article
132. Vuong HG, Ngo HTT, Bychkov A, Jung CK, Vu TH, Lu KB, et al. 2020; Differences in surgical resection rate and risk of malignancy in thyroid cytopathology practice between Western and Asian countries: a systematic review and meta-analysis. Cancer Cytopathol. 128(4):238–49. DOI:
10.1002/cncy.22228. PMID:
31883438.
Article
133. Chehade JM, Silverberg AB, Kim J, Case C, Mooradian AD. 2001; Role of repeated fine-needle aspiration of thyroid nodules with benign cytologic features. Endocr Pract. 7(4):237–43. DOI:
10.4158/EP.7.4.237. PMID:
11497473.
Article
134. Orlandi A, Puscar A, Capriata E, Fideleff H. 2005; Repeated fine-needle aspiration of the thyroid in benign nodular thyroid disease: critical evaluation of long-term follow-up. Thyroid. 15(3):274–8. DOI:
10.1089/thy.2005.15.274. PMID:
15785247.
Article
135. Oertel YC, Miyahara-Felipe L, Mendoza MG, Yu K. 2007; Value of repeated fine needle aspirations of the thyroid: an analysis of over ten thousand FNAs. Thyroid. 17(11):1061–6. DOI:
10.1089/thy.2007.0159. PMID:
17910525.
Article
136. Illouz F, Rodien P, Saint-Andre JP, Triau S, Laboureau-Soares S, Dubois S, et al. 2007; Usefulness of repeated fine-needle cytology in the follow-up of non-operated thyroid nodules. Eur J Endocrinol. 156(3):303–8. DOI:
10.1530/EJE-06-0616. PMID:
17322489.
Article
137. Tee YY, Lowe AJ, Brand CA, Judson RT. 2007; Fine-needle aspiration may miss a third of all malignancy in palpable thyroid nodules: a comprehensive literature review. Ann Surg. 246(5):714–20. DOI:
10.1097/SLA.0b013e3180f61adc. PMID:
17968160.
138. Pinchot SN, Al-Wagih H, Schaefer S, Sippel R, Chen H. 2009; Accuracy of fine-needle aspiration biopsy for predicting neoplasm or carcinoma in thyroid nodules 4 cm or larger. Arch Surg. 144(7):649–55. DOI:
10.1001/archsurg.2009.116. PMID:
19620545. PMCID:
PMC2910711.
Article
139. Kuru B, Gulcelik NE, Gulcelik MA, Dincer H. 2010; The false-negative rate of fine-needle aspiration cytology for diagnosing thyroid carcinoma in thyroid nodules. Langenbecks Arch Surg. 395(2):127–32. DOI:
10.1007/s00423-009-0470-3. PMID:
19296123.
140. Wharry LI, McCoy KL, Stang MT, Armstrong MJ, LeBeau SO, Tublin ME, et al. 2014; Thyroid nodules (>/=4 cm): can ultrasound and cytology reliably exclude cancer? World J Surg. 38(3):614–21. DOI:
10.1007/s00268-013-2261-9. PMID:
24081539.
Article
141. Nou E, Kwong N, Alexander LK, Cibas ES, Marqusee E, Alexander EK. 2014; Determination of the optimal time interval for repeat evaluation after a benign thyroid nodule aspiration. J Clin Endocrinol Metab. 99(2):510–6. DOI:
10.1210/jc.2013-3160. PMID:
24276452. PMCID:
PMC4413457.
Article
142. Yoon JH, Kwak JY, Moon HJ, Kim MJ, Kim EK. 2011; The diagnostic accuracy of ultrasound-guided fine-needle aspiration biopsy and the sonographic differences between benign and malignant thyroid nodules 3 cm or larger. Thyroid. 21(9):993–1000. DOI:
10.1089/thy.2010.0458. PMID:
21834673.
Article
143. Porterfield JR Jr., Grant CS, Dean DS, Thompson GB, Farley DR, Richards ML, et al. Reliability of benign fine needle aspiration cytology of large thyroid nodules. Surgery. 2008; 144(6):963–8. discussion 8–9. DOI:
10.1016/j.surg.2008.09.006. PMID:
19041004.
Article
144. Hong MJ, Na DG, Baek JH, Sung JY, Kim JH. 2017; Cytology-ultrasonography risk-stratification scoring system based on fine-needle aspiration cytology and the Korean-Thyroid Imaging Reporting and Data System. Thyroid. 27(7):953–9. DOI:
10.1089/thy.2016.0603. PMID:
28463597.
Article
145. Krane JF, Nayar R, Renshaw AA. Ali SZ, Cibas ES, editors. 2018. Atypia of undetermined significance/follicular lesion of undetermined significance. The Bethesda system for reporting thyroid cytopathology. New York: Springer;p. 49–70.
Article
146. Cibas ES, Baloch ZW, Fellegara G, LiVolsi VA, Raab SS, Rosai J, et al. 2013; A prospective assessment defining the limitations of thyroid nodule pathologic evaluation. Ann Intern Med. 159(5):325–32. DOI:
10.7326/0003-4819-159-5-201309030-00006. PMID:
24026318.
Article
147. Davidov T, Trooskin SZ, Shanker BA, Yip D, Eng O, Crystal J, et al. 2010; Routine second-opinion cytopathology review of thyroid fine needle aspiration biopsies reduces diagnostic thyroidectomy. Surgery. 148(6):1294–9. discussion 9–301. DOI:
10.1016/j.surg.2010.09.029. PMID:
21134564.
Article
148. Park KT, Ahn SH, Mo JH, Park YJ, Park DJ, Choi SI, et al. 2011; Role of core needle biopsy and ultrasonographic finding in management of indeterminate thyroid nodules. Head Neck. 33(2):160–5. DOI:
10.1002/hed.21414. PMID:
20848434.
Article
149. Lee KH, Shin JH, Oh YL, Hahn SY. 2014; Atypia of undetermined significance in thyroid fine-needle aspiration cytology: prediction of malignancy by US and comparison of methods for further management. Ann Surg Oncol. 21(7):2326–31. DOI:
10.1245/s10434-014-3568-y. PMID:
24566858.
Article
150. Na DG, Min HS, Lee H, Won JK, Seo HB, Kim JH. 2015; Role of core needle biopsy in the management of atypia/follicular lesion of undetermined significance thyroid nodules: comparison with repeat fine-needle aspiration in subcategory nodules. Eur Thyroid J. 4(3):189–96. DOI:
10.1159/000437051. PMID:
26558236. PMCID:
PMC4637794.
Article
151. Kim SK, Hwang TS, Yoo YB, Han HS, Kim DL, Song KH, et al. 2011; Surgical results of thyroid nodules according to a management guideline based on the BRAF(V600E) mutation status. J Clin Endocrinol Metab. 96(3):658–64. DOI:
10.1210/jc.2010-1082. PMID:
21239517.
152. Adeniran AJ, Hui P, Chhieng DC, Prasad ML, Schofield K, Theoharis C. 2011; BRAF mutation testing of thyroid fine-needle aspiration specimens enhances the predictability of malignancy in thyroid follicular lesions of undetermined significance. Acta Cytol. 55(6):570–5. DOI:
10.1159/000333274. PMID:
22156468.
153. Ngo HTT, Nguyen TPX, Vu TH, Jung CK, Hassell L, Kakudo K, et al. 2021; Impact of molecular testing on the management of indeterminate thyroid nodules among Western and Asian countries: a systematic review and meta-analysis. Endocr Pathol. 32(2):269–79. DOI:
10.1007/s12022-020-09643-0. PMID:
32767256.
Article
154. Roth MY, Witt RL, Steward DL. 2018; Molecular testing for thyroid nodules: review and current state. Cancer. 124(5):888–98. DOI:
10.1002/cncr.30708. PMID:
29278433.
Article
155. Patel KN, Angell TE, Babiarz J, Barth NM, Blevins T, Duh QY, et al. 2018; Performance of a genomic sequencing classifier for the preoperative diagnosis of cytologically indeterminate thyroid nodules. JAMA Surg. 153(9):817–24. DOI:
10.1001/jamasurg.2018.1153. PMID:
29799911. PMCID:
PMC6583881.
156. Steward DL, Carty SE, Sippel RS, Yang SP, Sosa JA, Sipos JA, et al. 2019; Performance of a multigene genomic classifier in thyroid nodules with indeterminate cytology: a prospective blinded multicenter study. JAMA Oncol. 5(2):204–12. DOI:
10.1001/jamaoncol.2018.4616. PMID:
30419129. PMCID:
PMC6439562.
Article
157. Labourier E, Shifrin A, Busseniers AE, Lupo MA, Manganelli ML, Andruss B, et al. 2015; Molecular testing for miRNA, mRNA, and DNA on fine-needle aspiration improves the preoperative diagnosis of thyroid nodules with indeterminate cytology. J Clin Endocrinol Metab. 100(7):2743–50. DOI:
10.1210/jc.2015-1158. PMID:
25965083. PMCID:
PMC4490308.
Article
158. Lithwick-Yanai G, Dromi N, Shtabsky A, Morgenstern S, Strenov Y, Feinmesser M, et al. 2017; Multicentre validation of a microRNA-based assay for diagnosing indeterminate thyroid nodules utilising fine needle aspirate smears. J Clin Pathol. 70(6):500–7. DOI:
10.1136/jclinpath-2016-204089. PMID:
27798083. PMCID:
PMC5484037.
Article
160. Larcher de Almeida AM, Delfim RLC, Vidal APA, Chaves M, Santiago ACL, Gianotti MF, et al. 2021; Combining the American Thyroid Association's ultrasound classification with cytological subcategorization improves the assessment of malig-nancy risk in indeterminate thyroid nodules. Thyroid. 31(6):922–32. DOI:
10.1089/thy.2019.0575. PMID:
33143569.
161. Słowińska-Klencka D, Wysocka-Konieczna K, Klencki M, Popowicz B. 2020; Diagnostic value of six Thyroid Imaging Reporting and Data Systems (TIRADS) in cytologically equivocal thyroid nodules. J Clin Med. 9(7):2281. DOI:
10.3390/jcm9072281.
Article
162. Henry MR, Westra WH, Krane JF, Schmitt F. Ali SZ, Cibas ES, editors. 2018. Follicular neoplasm/suspicious for a follicular neoplasm. The Bethesda system for reporting thyroid cyto-pathology. New York: Springer;p. 71–80.
Article
163. Nikiforov YE, Seethala RR, Tallini G, Baloch ZW, Basolo F, Thompson LD, et al. 2016; Nomenclature revision for encapsulated follicular variant of papillary thyroid carcinoma: a paradigm shift to reduce overtreatment of indolent tumors. JAMA Oncol. 2(8):1023–9. DOI:
10.1001/jamaoncol.2016.0386. PMID:
27078145. PMCID:
PMC5539411.
164. Kuru B, Kefeli M. 2018; Risk factors associated with malignancy and with triage to surgery in thyroid nodules classified as Bethesda category IV (FN/SFN). Diagn Cytopathol. 46(6):489–94. DOI:
10.1002/dc.23923. PMID:
29524316.
Article
165. Parikh PP, Allan BJ, Lew JI. 2013; Surgeon-performed ultrasound predictors of malignancy in patients with Hurthle cell neoplasms of the thyroid. J Surg Res. 184(1):247–52. DOI:
10.1016/j.jss.2013.03.005. PMID:
23535112.
166. Petric R, Perhavec A, Gazic B, Besic N. 2012; Preoperative serum thyroglobulin concentration is an independent predictive factor of malignancy in follicular neoplasms of the thyroid gland. J Surg Oncol. 105(4):351–6. DOI:
10.1002/jso.22030. PMID:
21751218.
167. Lubitz CC, Faquin WC, Yang J, Mekel M, Gaz RD, Parangi S, et al. 2010; Clinical and cytological features predictive of malignancy in thyroid follicular neoplasms. Thyroid. 20(1):25–31. DOI:
10.1089/thy.2009.0208. PMID:
20025540.
Article
168. Williams MD, Suliburk JW, Staerkel GA, Busaidy NL, Clayman GL, Evans DB, et al. 2009; Clinical significance of distinguishing between follicular lesion and follicular neoplasm in thyroid fine-needle aspiration biopsy. Ann Surg Oncol. 16(11):3146–53. DOI:
10.1245/s10434-009-0666-3. PMID:
19727961.
170. Gulcelik NE, Gulcelik MA, Kuru B. 2008; Risk of malignancy in patients with follicular neoplasm: predictive value of clinical and ultrasonographic features. Arch Otolaryngol Head Neck Surg. 134(12):1312–5. DOI:
10.1001/archotol.134.12.1312. PMID:
19075128.
Article
171. Raber W, Kaserer K, Niederle B, Vierhapper H. 2000; Risk factors for malignancy of thyroid nodules initially identified as follicular neoplasia by fine-needle aspiration: results of a prospective study of one hundred twenty patients. Thyroid. 10(8):709–12. DOI:
10.1089/10507250050137806. PMID:
11014317.
Article
172. Tuttle RM, Lemar H, Burch HB. 1998; Clinical features associated with an increased risk of thyroid malignancy in patients with follicular neoplasia by fine-needle aspiration. Thyroid. 8(5):377–83. DOI:
10.1089/thy.1998.8.377. PMID:
9623727.
Article
173. Baloch ZW, Fleisher S, LiVolsi VA, Gupta PK. 2002; Diagnosis of "follicular neoplasm": a gray zone in thyroid fine-needle aspiration cytology. Diagn Cytopathol. 26(1):41–4. DOI:
10.1002/dc.10043. PMID:
11782086.
Article
174. Kim HJ, Mok JO, Kim CH, Kim YJ, Kim SJ, Park HK, et al. 2017; Preoperative serum thyroglobulin and changes in serum thyroglobulin during TSH suppression independently predict follicular thyroid carcinoma in thyroid nodules with a cytological diagnosis of follicular lesion. Endocr Res. 42(2):154–62. DOI:
10.1080/07435800.2016.1262395. PMID:
27936964.
Article
175. Giorgadze T, Rossi ED, Fadda G, Gupta PK, Livolsi VA, Baloch Z. 2004; Does the fine-needle aspiration diagnosis of "Hurthle-cell neoplasm/follicular neoplasm with oncocytic features" denote increased risk of malignancy? Diagn Cytopathol. 31(5):307–12. DOI:
10.1002/dc.20132. PMID:
15468114.
176. Raparia K, Min SK, Mody DR, Anton R, Amrikachi M. 2009; Clinical outcomes for "suspicious" category in thyroid fine-needle aspiration biopsy: patient's sex and nodule size are possible predictors of malignancy. Arch Pathol Lab Med. 133(5):787–90. DOI:
10.5858/133.5.787. PMID:
19415954.
Article
177. Hu TX, Nguyen DT, Patel M, Beckett K, Douek M, Masamed R, et al. 2022; The effect modification of ultrasound risk classification on molecular testing in predicting the risk of malignancy in cytologically indeterminate thyroid nodules. Thyroid. 32(8):905–16. DOI:
10.1089/thy.2021.0659. PMID:
35611970.
Article
178. Stewardson P, Eszlinger M, Paschke R. 2022; Diagnosis of endocrine disease: usefulness of genetic testing of fine-needle aspirations for diagnosis of thyroid cancer. Eur J Endocrinol. 187(3):R41–52. DOI:
10.1530/EJE-21-1293. PMID:
35900312.
Article
179. Colombo C, Muzza M, Pogliaghi G, Palazzo S, Vannucchi G, Vicentini L, et al. 2021; The thyroid risk score (TRS) for nodules with indeterminate cytology. Endocr Relat Cancer. 28(4):225–35. DOI:
10.1530/ERC-20-0511. PMID:
33640868.
Article
180. VanderLaan PA, Chandra A, Filie AC, Randolph GW, Powers CN. Ali SZ, Cibas ES, editors. 2018. Suspicious for malignancy. The Bethesda system for reporting thyroid cytopathology. New York: Springer;p. 101–18.
Article
181. Ha EJ, Lim HK, Yoon JH, Baek JH, Do KH, Choi M, et al. 2018; Primary imaging test and appropriate biopsy methods for thyroid nodules: guidelines by Korean Society of Radiology and National Evidence-Based Healthcare Collaborating Agency. Korean J Radiol. 19(4):623–31. DOI:
10.3348/kjr.2018.19.4.623. PMID:
29962869. PMCID:
PMC6005947.
182. Bernet V, Hupart KH, Parangi S, Woeber KA. 2014; AACE/ACE disease state commentary: molecular diagnostic testing of thyroid nodules with indeterminate cytopathology. Endocr Pract. 20(4):360–3. DOI:
10.4158/EP14066.PS. PMID:
24727662.
184. Ito Y, Uruno T, Nakano K, Takamura Y, Miya A, Kobayashi K, et al. 2003; An observation trial without surgical treatment in patients with papillary microcarcinoma of the thyroid. Thyroid. 13(4):381–7. DOI:
10.1089/105072503321669875. PMID:
12804106.
Article
185. Oh HS, Ha J, Kim HI, Kim TH, Kim WG, Lim DJ, et al. 2018; Active surveillance of low-risk papillary thyroid microcar-cinoma: a multi-center cohort study in Korea. Thyroid. 28(12):1587–94. DOI:
10.1089/thy.2018.0263. PMID:
30226447.
Article
186. Lee EK, Moon JH, Hwangbo Y, Ryu CH, Cho SW, Choi JY, et al. 2022; Progression of low-risk papillary thyroid microcarcinoma during active surveillance: interim analysis of a multicenter prospective cohort study of active surveillance on papillary thyroid microcarcinoma in Korea. Thyroid. 32(11):1328–36. DOI:
10.1089/thy.2021.0614. PMID:
36205563. PMCID:
PMC9700369.
Article
187. Ho AS, Kim S, Zalt C, Melany ML, Chen IE, Vasquez J, et al. 2022; Expanded parameters in active surveillance for low-risk papillary thyroid carcinoma: a nonrandomized controlled trial. JAMA Oncol. 8(11):1588–96. DOI:
10.1001/jamaoncol.2022.3875. PMID:
36107411.
Article
188. Chou R, Dana T, Haymart M, Leung AM, Tufano RP, Sosa JA, et al. 2022; Active surveillance versus thyroid surgery for differentiated thyroid cancer: a systematic review. Thyroid. 32(4):351–67. DOI:
10.1089/thy.2021.0539. PMID:
35081743.
Article
189. Campopiano MC, Matrone A, Rago T, Scutari M, Prete A, Agate L, et al. 2021; Assessing mPTC progression during active surveillance: volume or diameter increase? J Clin Med. 10(18):4068. DOI:
10.3390/jcm10184068. PMID:
34575179. PMCID:
PMC8471696.
Article
190. Molinaro E, Campopiano MC, Pieruzzi L, Matrone A, Agate L, Bottici V, et al. 2020; Active surveillance in papillary thyroid microcarcinomas is feasible and safe: experience at a single Italian center. J Clin Endocrinol Metab. 105(3):e172–80. DOI:
10.1210/clinem/dgz113. PMID:
31652318. PMCID:
PMC8105780.
Article
191. Sawka AM, Ghai S, Rotstein L, Irish JC, Pasternak JD, Gullane PJ, et al. 2022; A quantitative analysis examining patients' choice of active surveillance or surgery for managing low-risk papillary thyroid cancer. Thyroid. 32(3):255–62. DOI:
10.1089/thy.2021.0485. PMID:
35019770.
192. Won HR, Jeon E, Heo DB, Chang JW, Shong M, Kim JR, et al. 2023; Age-dependent clinicopathological characteristics of patients with T1b papillary thyroid carcinoma: implications for the possibility of active surveillance. Ann Surg Oncol. 30:2246–53. DOI:
10.1245/s10434-022-13011-z. PMID:
36581723.
Article
193. Sawka AM, Ghai S, Tomlinson G, Rotstein L, Gilbert R, Gullane P, et al. 2018; A protocol for a Canadian prospective observational study of decision-making on active surveillance or surgery for low-risk papillary thyroid cancer. BMJ Open. 8(4):e020298. DOI:
10.1136/bmjopen-2017-020298. PMID:
29654030. PMCID:
PMC5898309.
Article
194. Tuttle RM, Fagin JA, Minkowitz G, Wong RJ, Roman B, Patel S, et al. 2017; Natural history and tumor volume kinetics of papillary thyroid cancers during active surveillance. JAMA Otolaryngol Head Neck Surg. 143(10):1015–20. DOI:
10.1001/jamaoto.2017.1442. PMID:
28859191. PMCID:
PMC5710258.
Article
195. Fukuoka O, Sugitani I, Ebina A, Toda K, Kawabata K, Yamada K. 2016; Natural history of asymptomatic papillary thyroid microcarcinoma: time-dependent changes in calcification and vascularity during active surveillance. World J Surg. 40(3):529–37. DOI:
10.1007/s00268-015-3349-1. PMID:
26581368.
Article
196. Sakai T, Sugitani I, Ebina A, Fukuoka O, Toda K, Mitani H, et al. 2019; Active surveillance for T1bN0M0 papillary thyroid carcinoma. Thyroid. 29(1):59–63. DOI:
10.1089/thy.2018.0462. PMID:
30560718.
197. Ito Y, Miyauchi A, Kihara M, Higashiyama T, Kobayashi K, Miya A. 2014; Patient age is significantly related to the progression of papillary microcarcinoma of the thyroid under observation. Thyroid. 24(1):27–34. DOI:
10.1089/thy.2013.0367. PMID:
24001104. PMCID:
PMC3887422.
Article
198. Davies L, Chang CH, Sirovich B, Tuttle RM, Fukushima M, Ito Y, et al. 2021; Thyroid cancer active surveillance program retention and adherence in Japan. JAMA Otolaryngol Head Neck Surg. 147(1):77–84. DOI:
10.1001/jamaoto.2020.4200. PMID:
33237264. PMCID:
PMC7689571.
Article
199. Rosario PW, Mourao GF, Calsolari MR. 2019; Active surveillance in adults with low-risk papillary thyroid microcarcinomas: a prospective study. Horm Metab Res. 51(11):703–8. DOI:
10.1055/a-1015-6684. PMID:
31683339.
Article
200. Sasaki T, Miyauchi A, Fujishima M, Ito Y, Kudo T, Noda T, et al. 2023; Comparison of postoperative unfavorable events in patients with low-risk papillary thyroid carcinoma: immediate surgery versus conversion surgery following active surveillance. Thyroid. 33(2):186–91. DOI:
10.1089/thy.2022.0444. PMID:
36205580. PMCID:
PMC9986002.
Article
201. Filetti S, Durante C, Hartl D, Leboulleux S, Locati LD, Newbold K, et al. 2019; Thyroid cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-updagger. Ann Oncol. 30(12):1856–83. DOI:
10.1093/annonc/mdz400. PMID:
31549998.
202. Takami H, Ito Y, Okamoto T, Yoshida A. 2011; Therapeutic strategy for differentiated thyroid carcinoma in Japan based on a newly established guideline managed by Japanese Society of Thyroid Surgeons and Japanese Association of Endocrine Surgeons. World J Surg. 35(1):111–21. DOI:
10.1007/s00268-010-0832-6. PMID:
21042913.
Article
203. Horiguchi K, Yoshida Y, Iwaku K, Emoto N, Kasahara T, Sato J, et al. 2021; Position paper from the Japan Thyroid Association task force on the management of low-risk papillary thyroid microcarcinoma (T1aN0M0) in adults. Endocr J. 68(7):763–80. DOI:
10.1507/endocrj.EJ20-0692. PMID:
33762511.
Article
204. Koshkina A, Fazelzad R, Sugitani I, Miyauchi A, Thabane L, Goldstein DP, et al. 2020; Association of patient age with progression of low-risk papillary thyroid carcinoma under active surveillance: a systematic review and meta-analysis. JAMA Otolaryngol Head Neck Surg. 146(6):552–60. DOI:
10.1001/jamaoto.2020.0368. PMID:
32297926. PMCID:
PMC7163784.
Article
205. Goldner WS, Angell TE, McAdoo SL, Babiarz J, Sadow PM, Nabhan FA, et al. 2019; Molecular variants and their risks for malignancy in cytologically indeterminate thyroid nodules. Thyroid. 29(11):1594–605. DOI:
10.1089/thy.2019.0278. PMID:
31469053. PMCID:
PMC6864764.
Article
206. Gilani SM, Abi-Raad R, Garritano J, Cai G, Prasad ML, Adeniran AJ. 2022; RAS mutation and associated risk of malignancy in the thyroid gland: an FNA study with cytology-histology correlation. Cancer Cytopathol. 130(4):284–93. DOI:
10.1002/cncy.22537. PMID:
34847284. PMCID:
PMC9467821.
207. Yang J, Gong Y, Yan S, Chen H, Qin S, Gong R. 2020; Association between TERT promoter mutations and clinical behaviors in differentiated thyroid carcinoma: a systematic review and meta-analysis. Endocrine. 67(1):44–57. DOI:
10.1007/s12020-019-02117-2. PMID:
31655978. PMCID:
PMC6969012.
Article
208. Shonka DC Jr., Ho A, Chintakuntlawar AV, Geiger JL, Park JC, Seetharamu N, et al. 2022; American Head and Neck Society Endocrine Surgery Section and International Thyroid Oncology Group consensus statement on mutational testing in thyroid cancer: defining advanced thyroid cancer and its targeted treatment. Head Neck. 44(6):1277–300. DOI:
10.1002/hed.27025. PMID:
35274388. PMCID:
PMC9332138.
Article
209. Kim SY, Jung CK. Frequency of TERT promoter mutations in real-world analysis of 2,092 thyroid carcinoma patients (Endocrinol Metab 2022;37:652-63, Heera Yang et al.). Endocrinol Metab (Seoul). 2022; 37(6):947–8. DOI:
10.3803/EnM.2022.1596. PMID:
36353807. PMCID:
PMC9816498.
Article
210. Yang H, Park H, Ryu HJ, Heo J, Kim JS, Oh YL, et al. 2022; Frequency of TERT promoter mutations in real-world analysis of 2,092 thyroid carcinoma patients. Endocrinol Metab (Seoul). 37(4):652–63. DOI:
10.3803/EnM.2022.1477. PMID:
35864728. PMCID:
PMC9449103.
211. Kim SY, Kim T, Kim K, Bae JS, Kim JS, Jung CK. 2020; Highly prevalent BRAF V600E and low-frequency TERT promoter mutations underlie papillary thyroid carcinoma in Koreans. J Pathol Transl Med. 54(4):310–7. DOI:
10.4132/jptm.2020.05.12. PMID:
32527075. PMCID:
PMC7385264.
Article
212. Choi YS, Choi SW, Yi JW. 2021; Prospective analysis of TERT promoter mutations in papillary thyroid carcinoma at a single institution. J Clin Med. 10(10):2179. DOI:
10.3390/jcm10102179. PMID:
34070093. PMCID:
PMC8158380.
Article
213. Lee J, Ha EJ, Roh J, Kim HK. 2021; Presence of TERT +/- BRAF V600E mutation is not a risk factor for the clinical management of patients with papillary thyroid microcarcinoma. Surgery. 170(3):743–7. DOI:
10.1016/j.surg.2021.03.056. PMID:
33952391.
214. Wang N, Zhai H, Lu Y. 2013; Is fluorine-18 fluorodeoxyglucose positron emission tomography useful for the thyroid nodules with indeterminate fine needle aspiration biopsy? A meta-analysis of the literature. J Otolaryngol Head Neck Surg. 42(1):38. DOI:
10.1186/1916-0216-42-38. PMID:
24228840. PMCID:
PMC3765697.
215. Vriens D, Adang EM, Netea-Maier RT, Smit JW, de Wilt JH, Oyen WJ, et al. 2014; Cost-effectiveness of FDG-PET/CT for cytologically indeterminate thyroid nodules: a decision analytic approach. J Clin Endocrinol Metab. 99(9):3263–74. DOI:
10.1210/jc.2013-3483. PMID:
24873995.
Article
216. Deandreis D, Al Ghuzlan A, Auperin A, Vielh P, Caillou B, Chami L, et al. 2012; Is (18)F-fluorodeoxyglucose-PET/CT useful for the presurgical characterization of thyroid nodules with indeterminate fine needle aspiration cytology? Thyroid. 22(2):165–72. DOI:
10.1089/thy.2011.0255. PMID:
22257371.
Article
217. de Koster EJ, de Geus-Oei LF, Brouwers AH, van Dam E, Dijkhorst-Oei LT, van Engen-van Grunsven ACH, et al. 2022; [(18)F]FDG-PET/CT to prevent futile surgery in indeterminate thyroid nodules: a blinded, randomised controlled multicentre trial. Eur J Nucl Med Mol Imaging. 49(6):1970–84. DOI:
10.1007/s00259-021-05627-2. PMID:
34981165. PMCID:
PMC9016050.
Article
218. de Koster EJ, Vriens D, van Aken MO, Dijkhorst-Oei LT, Oyen WJG, Peeters RP, et al. 2022; FDG-PET/CT in indeterminate thyroid nodules: cost-utility analysis alongside a randomised controlled trial. Eur J Nucl Med Mol Imaging. 49(10):3452–69. DOI:
10.1007/s00259-022-05794-w. PMID:
35435497. PMCID:
PMC9308600.
219. Papini E, Guglielmi R, Bianchini A, Crescenzi A, Taccogna S, Nardi F, et al. 2002; Risk of malignancy in nonpalpable thyroid nodules: predictive value of ultrasound and color-Doppler features. J Clin Endocrinol Metab. 87(5):1941–6. DOI:
10.1210/jcem.87.5.8504. PMID:
11994321.
Article
220. Brito JP, Yarur AJ, Prokop LJ, McIver B, Murad MH, Montori VM. 2013; Prevalence of thyroid cancer in multinodular goiter versus single nodule: a systematic review and meta-analysis. Thyroid. 23(4):449–55. DOI:
10.1089/thy.2012.0156. PMID:
23067375.
221. Leenhardt L, Hejblum G, Franc B, Fediaevsky LD, Delbot T, Le Guillouzic D, et al. 1999; Indications and limits of ultrasound-guided cytology in the management of nonpalpable thyroid nodules. J Clin Endocrinol Metab. 84(1):24–8. DOI:
10.1210/jcem.84.1.5418. PMID:
9920057.
Article
222. Baser H, Topaloglu O, Bilginer MC, Ulusoy S, Kilicarslan A, Ozdemir E, et al. 2019; Are cytologic and histopathologic features of hot thyroid nodules different from cold thyroid nodules? Diagn Cytopathol. 47(9):898–903. DOI:
10.1002/dc.24251. PMID:
31190472.
Article
223. Carmeci C, Jeffrey RB, McDougall IR, Nowels KW, Weigel RJ. 1998; Ultrasound-guided fine-needle aspiration biopsy of thyroid masses. Thyroid. 8(4):283–9. DOI:
10.1089/thy.1998.8.283. PMID:
9588492.
Article
224. Ylagan LR, Farkas T, Dehner LP. 2004; Fine needle aspiration of the thyroid: a cytohistologic correlation and study of discrepant cases. Thyroid. 14(1):35–41. DOI:
10.1089/105072504322783821. PMID:
15009912.
Article
227. Erdogan MF, Kamel N, Aras D, Akdogan A, Baskal N, Erdogan G. 1998; Value of re-aspirations in benign nodular thyroid disease. Thyroid. 8(12):1087–90. DOI:
10.1089/thy.1998.8.1087. PMID:
9920362.
228. Danese D, Sciacchitano S, Farsetti A, Andreoli M, Pontecorvi A. 1998; Diagnostic accuracy of conventional versus sonography-guided fine-needle aspiration biopsy of thyroid nodules. Thyroid. 8(1):15–21. DOI:
10.1089/thy.1998.8.15. PMID:
9492148.
Article
229. Rosario PW, Calsolari MR. 2015; What is the best criterion for repetition of fine-needle aspiration in thyroid nodules with initially benign cytology? Thyroid. 25(10):1115–20. DOI:
10.1089/thy.2015.0253. PMID:
26148539.
Article
230. Maino F, Bufano A, Dalmazio G, Campanile M, Pilli T, Forleo R, et al. 2021; Validation of American Thyroid Association ultrasound risk-adapted approach for repeating cytology in benign thyroid nodules. Thyroid. 31(3):446–51. DOI:
10.1089/thy.2020.0351. PMID:
32718278.
Article
231. Kim SY, Han KH, Moon HJ, Kwak JY, Chung WY, Kim EK. 2014; Thyroid nodules with benign findings at cytologic examination: results of long-term follow-up with US. Radiology. 271(1):272–81. DOI:
10.1148/radiol.13131334. PMID:
24475857.
232. Zhang M, Zhang Y, Fu S, Lv F, Tang J. 2014; Thyroid nodules with suspicious ultrasound findings: the role of ultrasound-guided core needle biopsy. Clin Imaging. 38(4):434–8. DOI:
10.1016/j.clinimag.2014.03.010. PMID:
24746446.
233. Chung SR, Baek JH, Choi YJ, Sung TY, Song DE, Kim TY, et al. 2019; The role of core needle biopsy for the evaluation of thyroid nodules with suspicious ultrasound features. Korean J Radiol. 20(1):158–65. DOI:
10.3348/kjr.2018.0101. PMID:
30627031. PMCID:
PMC6315075.
234. Durante C, Costante G, Lucisano G, Bruno R, Meringolo D, Paciaroni A, et al. 2015; The natural history of benign thyroid nodules. JAMA. 313(9):926–35. DOI:
10.1001/jama.2015.0956. PMID:
25734734.
Article
235. Papini E, Petrucci L, Guglielmi R, Panunzi C, Rinaldi R, Bacci V, et al. 1998; Long-term changes in nodular goiter: a 5-year prospective randomized trial of levothyroxine suppressive therapy for benign cold thyroid nodules. J Clin Endocrinol Metab. 83(3):780–3. DOI:
10.1210/jcem.83.3.4615. PMID:
9506726.
236. Zelmanovitz F, Genro S, Gross JL. 1998; Suppressive therapy with levothyroxine for solitary thyroid nodules: a double-blind controlled clinical study and cumulative meta-analyses. J Clin Endocrinol Metab. 83(11):3881–5. DOI:
10.1210/jc.83.11.3881. PMID:
9814462.
Article
237. Wemeau JL, Caron P, Schvartz C, Schlienger JL, Orgiazzi J, Cousty C, et al. 2002; Effects of thyroid-stimulating hormone suppression with levothyroxine in reducing the volume of solitary thyroid nodules and improving extranodular nonpalpable changes: a randomized, double-blind, placebo-controlled trial by the French Thyroid Research Group. J Clin Endocrinol Metab. 87(11):4928–34. DOI:
10.1210/jc.2002-020365. PMID:
12414852.
Article
238. Castro MR, Caraballo PJ, Morris JC. 2002; Effectiveness of thyroid hormone suppressive therapy in benign solitary thyroid nodules: a meta-analysis. J Clin Endocrinol Metab. 87(9):4154–9. DOI:
10.1210/jc.2001-011762. PMID:
12213864.
Article
239. Ha EJ, Baek JH, Che Y, Chou YH, Fukunari N, Kim JH, et al. 2021; Radiofrequency ablation of benign thyroid nodules: recommendations from the Asian Conference on Tumor Ablation Task Force. Ultrasonography. 40(1):75–82. DOI:
10.14366/usg.20112. PMID:
33142404. PMCID:
PMC7758103.
Article
240. Papini E, Monpeyssen H, Frasoldati A, Hegedus L. 2020; 2020 European Thyroid Association clinical practice guideline for the use of image-guided ablation in benign thyroid nodules. Eur Thyroid J. 9(4):172–85. DOI:
10.1159/000508484. PMID:
32903999. PMCID:
PMC7445670.
Article
241. Kuo JH, Sinclair CF, Lang B, Spiezia S, Yu M, Ha EJ, et al. 2022; A comprehensive review of interventional ablation techniques for the management of thyroid nodules and metastatic lymph nodes. Surgery. 171(4):920–31. DOI:
10.1016/j.surg.2021.07.043. PMID:
34776258.
Article
242. Guan SH, Wang H, Teng DK. 2020; Comparison of ultrasound-guided thermal ablation and conventional thyroidectomy for benign thyroid nodules: a systematic review and meta-analysis. Int J Hyperthermia. 37(1):442–9. DOI:
10.1080/02656736.2020.1758802. PMID:
32369708.
243. Jin H, Lin W, Lu L, Cui M. 2021; Conventional thyroidectomy vs thyroid thermal ablation on postoperative quality of life and satisfaction for patients with benign thyroid nodules. Eur J Endocrinol. 184(1):131–41. DOI:
10.1530/EJE-20-0562. PMID:
33112273.
244. Hahn SY, Shin JH, Na DG, Ha EJ, Ahn HS, Lim HK, et al. 2019; Ethanol ablation of the thyroid nodules: 2018 consensus statement by the Korean Society of Thyroid Radiology. Korean J Radiol. 20(4):609–20. DOI:
10.3348/kjr.2018.0696. PMID:
30887743. PMCID:
PMC6424836.
Article
246. Chung SR, Suh CH, Baek JH, Choi YJ, Lee JH. 2018; The role of core needle biopsy in the diagnosis of initially detected thyroid nodules: a systematic review and meta-analysis. Eur Radiol. 28(11):4909–18. DOI:
10.1007/s00330-018-5494-z. PMID:
29789911.
Article
247. Park KW, Shin JH, Hahn SY, Oh YL, Kim SW, Kim TH, et al. 2020; Ultrasound-guided fine-needle aspiration or core needle biopsy for diagnosing follicular thyroid carcinoma? Clin Endocrinol (Oxf). 92(5):468–74. DOI:
10.1111/cen.14167. PMID:
32012326.
Article
248. Na HY, Moon JH, Choi JY, Yu HW, Jeong WJ, Kim YK, et al. 2020; Preoperative diagnostic categories of fine needle aspiration cytology for histologically proven thyroid follicular adenoma and carcinoma, and Hurthle cell adenoma and carcinoma: analysis of cause of under- or misdiagnoses. PLoS One. 15(11):e0241597. DOI:
10.1371/journal.pone.0241597. PMID:
33147258. PMCID:
PMC7641403.
Article
249. Kwak JY, Koo H, Youk JH, Kim MJ, Moon HJ, Son EJ, et al. 2010; Value of US correlation of a thyroid nodule with initially benign cytologic results. Radiology. 254(1):292–300. DOI:
10.1148/radiol.2541090460. PMID:
20019136.
Article
250. Yang J, Schnadig V, Logrono R, Wasserman PG. 2007; Fine-needle aspiration of thyroid nodules: a study of 4703 patients with histologic and clinical correlations. Cancer. 111(5):306–15. DOI:
10.1002/cncr.22955. PMID:
17680588.
251. Gerhard R, da Cunha Santos G. 2007; Inter- and intraobserver reproducibility of thyroid fine needle aspiration cytology: an analysis of discrepant cases. Cytopathology. 18(2):105–11. DOI:
10.1111/j.1365-2303.2006.00430.x. PMID:
17397495.
Article
252. Scappaticcio L, Trimboli P, Iorio S, Maiorino MI, Longo M, Croce L, et al. 2022; Repeat thyroid FNAC: inter-observer agreement among high- and low-volume centers in Naples metropolitan area and correlation with the EU-TIRADS. Front Endocrinol (Lausanne). 13:1001728. DOI:
10.3389/fendo.2022.1001728. PMID:
36187133. PMCID:
PMC9519850.
Article
253. Jung SL, Baek JH, Lee JH, Shong YK, Sung JY, Kim KS, et al. 2018; Efficacy and safety of radiofrequency ablation for benign thyroid nodules: a prospective multicenter study. Korean J Radiol. 19(1):167–74. DOI:
10.3348/kjr.2018.19.1.167. PMID:
29354014. PMCID:
PMC5768499.
Article
254. Baek JH, Ha EJ, Choi YJ, Sung JY, Kim JK, Shong YK. 2015; Radiofrequency versus ethanol ablation for treating predominantly cystic thyroid nodules: a randomized clinical trial. Korean J Radiol. 16(6):1332–40. DOI:
10.3348/kjr.2015.16.6.1332. PMID:
26576124. PMCID:
PMC4644756.
Article
255. Sung JY, Baek JH, Kim KS, Lee D, Yoo H, Kim JK, et al. 2013; Single-session treatment of benign cystic thyroid nodules with ethanol versus radiofrequency ablation: a prospective randomized study. Radiology. 269(1):293–300. DOI:
10.1148/radiol.13122134. PMID:
23616630.
Article
256. Choi WJ, Baek JH, Choi YJ, Lee JH, Ha EJ, Lee WC, et al. 2015; Management of cystic or predominantly cystic thyroid nodules: role of simple aspiration of internal fluid. Endocr Res. 40(4):215–9. DOI:
10.3109/07435800.2015.1015729. PMID:
25839339.
Article
257. Kim JH, Lee HK, Lee JH, Ahn IM, Choi CG. 2003; Efficacy of sonographically guided percutaneous ethanol injection for treatment of thyroid cysts versus solid thyroid nodules. AJR Am J Roentgenol. 180(6):1723–6. DOI:
10.2214/ajr.180.6.1801723. PMID:
12760950.
Article
258. Jang SW, Baek JH, Kim JK, Sung JY, Choi H, Lim HK, et al. 2012; How to manage the patients with unsatisfactory results after ethanol ablation for thyroid nodules: role of radiofrequency ablation. Eur J Radiol. 81(5):905–10. DOI:
10.1016/j.ejrad.2011.02.039. PMID:
21388767.
Article
259. Sung JY, Kim YS, Choi H, Lee JH, Baek JH. 2011; Optimum first-line treatment technique for benign cystic thyroid nodules: ethanol ablation or radiofrequency ablation? AJR Am J Roentgenol. 196(2):W210–4. DOI:
10.2214/AJR.10.5172. PMID:
21257865.
Article
260. Lee JH, Kim YS, Lee D, Choi H, Yoo H, Baek JH. 2010; Radiofrequency ablation (RFA) of benign thyroid nodules in patients with incompletely resolved clinical problems after ethanol ablation (EA). World J Surg. 34(7):1488–93. DOI:
10.1007/s00268-010-0565-6. PMID:
20376445.
Article
262. Tzavara I, Tzanela M, Vlassopoulou B, Kouyioumoutzakis G, Kyriazopoulou V, Alevizaki C, et al. 2002; Long term thyroid function after (131)I treatment for toxic adenoma. Hormones (Athens). 1(2):99–103. DOI:
10.14310/horm.2002.1157. PMID:
17110361.
Article
263. Bawand R, Borzouei S, Salimbahrami SA, Sheikh V. 2022; Comparison of clinical efficacy of antithyroid drugs, radioactive iodine, and thyroidectomy for treatment of patients with graves' disease, toxic thyroid adenoma, and toxic multinodular goiter. Biomed Biotechnol Res J. 6(4):569–75. DOI:
10.4103/bbrj.bbrj_99_22.
264. Ben Hamou A, Ghanassia E, Muller A, Ladsous M, Paladino NC, Brunaud L, et al. 2022; SFE-AFCE-SFMN 2022 consensus on the management of thyroid nodules: thermal ablation. Ann Endocrinol (Paris). 83(6):423–30. DOI:
10.1016/j.ando.2022.10.011. PMID:
36306894.
Article
265. Demir BK, Karakilic E, Saygili ES, Araci N, Ozdemir S. 2022; Predictors of hypothyroidism following empirical dose radioiodine in toxic thyroid nodules: real-life experience. Endocr Pract. 28(8):749–53. DOI:
10.1016/j.eprac.2022.05.001. PMID:
35537668.
Article
266. Roque C, Santos FS, Pilli T, Dalmazio G, Castagna MG, Pacini F. 2020; Long-term effects of radioiodine in toxic multinodular goiter: thyroid volume, function, and autoimmunity. J Clin Endocrinol Metab. 105(7):dgaa214. DOI:
10.1210/clinem/dgaa214. PMID:
32320467.
268. Ross DS, Burch HB, Cooper DS, Greenlee MC, Laurberg P, Maia AL, et al. 2016; 2016 American Thyroid Association guidelines for diagnosis and management of hyperthyroidism and other causes of thyrotoxicosis. Thyroid. 26(10):1343–421. DOI:
10.1089/thy.2016.0229. PMID:
27521067.
Article
269. Dobnig H, Amrein K. 2019; Value of monopolar and bipolar radiofrequency ablation for the treatment of benign thyroid nodules. Best Pract Res Clin Endocrinol Metab. 33(4):101283. DOI:
10.1016/j.beem.2019.05.007. PMID:
31278063.
270. Kim HJ, Cho SJ, Baek JH, Suh CH. 2021; Efficacy and safety of thermal ablation for autonomously functioning thyroid nodules: a systematic review and meta-analysis. Eur Radiol. 31(2):605–15. DOI:
10.1007/s00330-020-07166-0. PMID:
32816198.
Article
271. Mauri G, Papini E, Bernardi S, Barbaro D, Cesareo R, De Feo P, et al. 2022; Image-guided thermal ablation in autonomously functioning thyroid nodules. A retrospective multicenter three-year follow-up study from the Italian Minimally Invasive Treatment of the Thyroid (MITT) Group. Eur Radiol. 32(3):1738–46. DOI:
10.1007/s00330-021-08289-8. PMID:
34751793.
Article
272. Cesareo R, Palermo A, Pasqualini V, Manfrini S, Trimboli P, Stacul F, et al. 2020; Radiofrequency ablation on autonomously functioning thyroid nodules: a critical appraisal and review of the literature. Front Endocrinol (Lausanne). 11:317. DOI:
10.3389/fendo.2020.00317. PMID:
32528412. PMCID:
PMC7256164.
274. Kung AW, Chau MT, Lao TT, Tam SC, Low LC. 2002; The effect of pregnancy on thyroid nodule formation. J Clin Endocrinol Metab. 87(3):1010–4. DOI:
10.1210/jcem.87.3.8285. PMID:
11889153.
Article
275. Alexander EK, Pearce EN, Brent GA, Brown RS, Chen H, Dosiou C, et al. 2017; 2017 guidelines of the American Thyroid Association for the diagnosis and management of thyroid disease during pregnancy and the postpartum. Thyroid. 27(3):315–89. DOI:
10.1089/thy.2016.0457. PMID:
28056690.
Article
278. Moosa M, Mazzaferri EL. 1997; Outcome of differentiated thyroid cancer diagnosed in pregnant women. J Clin Endocrinol Metab. 82(9):2862–6. DOI:
10.1210/jcem.82.9.4247. PMID:
9284711.
Article
279. Mazzaferri EL, Jhiang SM. 1994; Long-term impact of initial surgical and medical therapy on papillary and follicular thyroid cancer. Am J Med. 97(5):418–28. DOI:
10.1016/0002-9343(94)90321-2. PMID:
7977430.
280. Oh HS, Kim WG, Park S, Kim M, Kwon H, Jeon MJ, et al. 2017; Serial neck ultrasonographic evaluation of changes in papillary thyroid carcinoma during pregnancy. Thyroid. 27(6):773–7. DOI:
10.1089/thy.2016.0618. PMID:
28446078.
Article