Korean J Orthod.  2023 May;53(3):185-193. 10.4041/kjod22.208.

Covariance patterns between ramus morphology and the rest of the face: A geometric morphometric study

Affiliations
  • 1Clinic of Orthodontics and Pediatric Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
  • 2Department of Orthodontics, School of Dentistry, National and Kapodistrian University of Athens, Athens, Greece

Abstract


Objective
The growth and development of the mandible strongly depend on modeling changes occurring at its ramus. Here, we investigated covariance patterns between the morphology of the ramus and the rest of the face.
Methods
Lateral cephalograms of 159 adults (55 males and 104 females) with no history of orthodontic treatment were collected. Geometric morphometrics with sliding semi-landmarks was used. The covariance between the ramus and face was investigated using a two-block partial least squares analysis (PLS). Sexual dimorphism and allometry were also assessed.
Results
Differences in the divergence of the face and anteroposterior relationship of the jaws accounted for 24.1% and 21.6% of shape variation in the sample, respectively. Shape variation was greater in the sagittal plane for males than for females (30.7% vs. 17.4%), whereas variation in the vertical plane was similar for both sexes (23.7% for males and 25.4% for females). Size-related allometric differences between the sexes accounted for the shape variation to a maximum of 6% regarding the face. Regarding the covariation between the shapes of the ramus and the rest of the face, wider and shorter rami were associated with a decreased lower anterior facial height as well as a prognathic mandible and maxilla (PLS 1, 45.5% of the covariance). Additionally, a more posteriorly inclined ramus in the lower region was correlated with a Class II pattern and flat mandibular plane.
Conclusions
The width, height, and inclination of the ramus were correlated with facial shape changes in the vertical and sagittal planes.

Keyword

Mandibular ramus; Face; Morphometrics; Covariance

Figure

  • Figure 1 Lateral cephalogram presenting 15 landmarks, 51 semi-landmarks, and five curves organized in three datasets: ramus (green), rest of the face (blue), and whole configuration (green and blue). Fixed landmarks are denoted with squares: Nasion; Rhinion; the most posterior point of the frontonasal suture; the most inferior and posterior points on the alveolar portion of the premaxilla; posterior nasal spine; anterior nasal spine; Supradentale; the most superior and posterior points on the alveolar lingual portion; Infradentale; Menton; Antegonial notch; Gonion; the most posterior point of the condyle; the most inferior point on the anterior margin of ramus posterior to second molars, and Coronion. The semi-landmarks are denoted with circles.

  • Figure 2 On the left, plots of PC1 and PC2 colored by sex; yellow dots represent females, and blue dots represent males. On the right, the shape changes from the average configuration of all individuals. The average configuration is colored black, and changes are represented in blue. Scaling in the positive and negative directions corresponds to the extreme values of the respective principal axes. PC, principal component.

  • Figure 3 Plots of PLS scores for ramus (Block 1) and rest of the face (Block 2) explaining 45.5% and 25.5% of the total covariance for PLS 1 and PLS 2, respectively. Blue dots represent males, and yellow dots represent females. The associated outline drawings depict the covariance pattern between the aforementioned structures at a scale of 0.12 for Block 1 and 0.1 for Block 2. The average outline shape is depicted in black and shape changes in blue. PLS, partial least squares.


Cited by  1 articles

READER’S FORUM
G. Dave Singh
Korean J Orthod. 2023;53(5):287-288.    doi: 10.4041/kjod23.121RF.


Reference

1. Charles SW. 1925; The temporomandibular joint and its influence on the growth of the mandible. Br Dent J. 46:845–55. https://cir.nii.ac.jp/crid/1573950400256289024.
2. Brodie AG. 1941; On the growth pattern of the human head. From the third month to the eighth year of life. Am J Anat. 68:209–62. https://doi.org/10.1002/aja.1000680204. DOI: 10.1002/aja.1000680204.
Article
3. Sicher H. 1947; The growth of the mandible. Am J Orthod. 33:30–5. https://doi.org/10.1016/0096-6347(47)90259-7. DOI: 10.1016/0096-6347(47)90259-7. PMID: 20278244.
Article
4. Moss ML. 1960; Functional analysis of human mandibular growth. J Prosthet Dent. 10:1149–59. https://doi.org/10.1016/0022-3913(60)90228-6. DOI: 10.1016/0022-3913(60)90228-6.
Article
5. Moss ML, Salentijn L. 1969; The primary role of functional matrices in facial growth. Am J Orthod. 55:566–77. https://doi.org/10.1016/0002-9416(69)90034-7. DOI: 10.1016/0002-9416(69)90034-7. PMID: 5253955.
Article
7. Brash JC. 1924. Growth of the Jaws and Palate. The growth of the jaws, normal and abnormal, in health and disease: five lectures. Dental Board of the United Kingdom;London: p. 23–66. https://books.google.co.kr/books/about/The_Growth_of_the_Jaws_Normal_and_Abnorm.html?id=Z5QPzQEACAAJ&redir_esc=y. DOI: 10.1093/gmo/9781561592630.article.j601900.
8. Enlow DH, Harris DB. 1964; A study of the postnatal growth of the human mandible. Am J Orthod. 50:25–50. https://doi.org/10.1016/S0002-9416(64)80016-6. DOI: 10.1016/S0002-9416(64)80016-6.
Article
9. Bang S, Enlow DH. 1967; Postnatal growth of the rabbit mandible. Arch Oral Biol. 12:993–8. https://doi.org/10.1016/0003-9969(67)90094-5. DOI: 10.1016/0003-9969(67)90094-5. PMID: 5231276.
Article
10. Proffit WR, Fields HW, Sarver DM. 2007. Contemporary orthodontics. Mosby Elsevier;St. Louis: https://www.worldcat.org/ko/title/contemporary-orthodontics/oclc/769189433. DOI: 10.1002/j.0022-0337.2007.71.12.tb04437.x.
11. Enlow DH, Hans MG. 1996. Essentials of facial growth. Saunders;Philadelphia: https://www.amazon.com/Essentials-Facial-Growth-Donald-Enlow/dp/0721661068. DOI: 10.1097/00008505-199600540-00041.
12. Moyers RE, Bookstein FL. 1979; The inappropriateness of conventional cephalometrics. Am J Orthod. 75:599–617. https://doi.org/10.1016/0002-9416(79)90093-9. DOI: 10.1016/0002-9416(79)90093-9. PMID: 287374.
Article
13. McIntyre GT, Mossey PA. 2003; Size and shape measurement in contemporary cephalometrics. Eur J Orthod. 25:231–42. https://doi.org/10.1093/ejo/25.3.231. DOI: 10.1093/ejo/25.3.231. PMID: 12831212.
Article
14. Gunz P, Mitteroecker P. 2013; Semilandmarks: a method for quantifying curves and surfaces. Hystrix It J Mamm. 24:103–9. https://doi.org/10.4404/hystrix-24.1-6292.
Article
15. Halazonetis DJ. 2004; Morphometrics for cephalometric diagnosis. Am J Orthod Dentofacial Orthop. 125:571–81. https://doi.org/10.1016/j.ajodo.2003.05.013. DOI: 10.1016/j.ajodo.2003.05.013. PMID: 15127026.
Article
16. Enlow DH. 1983; JCO/interviews Dr. Donald H. Enlow on craniofacial growth. J Clin Orthod. 17:669–79. https://pubmed.ncbi.nlm.nih.gov/6586731/.
17. Klingenberg CP. 2009; Morphometric integration and modularity in configurations of landmarks: tools for evaluating a priori hypotheses. Evol Dev. 11:405–21. https://doi.org/10.1111/j.1525-142X.2009.00347.x. DOI: 10.1111/j.1525-142X.2009.00347.x. PMID: 19601974. PMCID: PMC2776930.
Article
18. Fruciano C, Franchini P, Meyer A. 2013; Resampling-based approaches to study variation in morphological modularity. PLoS One. 8:e69376. https://doi.org/10.1371/journal.pone.0069376. DOI: 10.1371/journal.pone.0069376. PMID: 23874956. PMCID: PMC3712944. PMID: 3636493e64c9478da1df331b4ab3be8b.
Article
19. Halazonetis DJ. 2004; At what resolution should I scan cephalometric radiographs? Am J Orthod Dentofacial Orthop. 125:118–9. https://doi.org/10.1016/j.ajodo.2003.11.004. DOI: 10.1016/j.ajodo.2003.11.004. PMID: 14718889.
Article
20. Bookstein FL. 1991. Morphometric tools for landmark data: geometry and biology. Cambridge University Press;Cambridge: https://doi.org/10.1017/CBO9780511573064. DOI: 10.1017/CBO9780511573064.
Article
21. Klingenberg CP, Monteiro LR. 2005; Distances and directions in multidimensional shape spaces: implications for morphometric applications. Syst Biol. 54:678–88. https://doi.org/10.1080/10635150590947258. DOI: 10.1080/10635150590947258. PMID: 16126663.
Article
22. Klingenberg CP. 2011; MorphoJ: an integrated software package for geometric morphometrics. Mol Ecol Resour. 11:353–7. https://doi.org/10.1111/j.1755-0998.2010.02924.x. DOI: 10.1111/j.1755-0998.2010.02924.x. PMID: 21429143.
Article
23. Velemínská J, Bigoni L, Krajíček V, Borský J, Šmahelová D, Cagáňová V, et al. 2012; Surface facial modelling and allometry in relation to sexual dimorphism. Homo. 63:81–93. https://doi.org/10.1016/j.jchb.2012.02.002. DOI: 10.1016/j.jchb.2012.02.002. PMID: 22425585.
Article
24. Klingenberg CP. 2016; Size, shape, and form: concepts of allometry in geometric morphometrics. Dev Genes Evol. 226:113–37. https://doi.org/10.1007/s00427-016-0539-2. DOI: 10.1007/s00427-016-0539-2. PMID: 27038023. PMCID: PMC4896994.
Article
25. Rohlf FJ, Corti M. 2000; Use of two-block partial least-squares to study covariation in shape. Syst Biol. 49:740–53. https://doi.org/10.1080/106351500750049806. DOI: 10.1080/106351500750049806. PMID: 12116437.
Article
26. Gkantidis N, Halazonetis DJ. 2011; Morphological integration between the cranial base and the face in children and adults. J Anat. 218:426–38. https://doi.org/10.1111/j.1469-7580.2011.01346.x. DOI: 10.1111/j.1469-7580.2011.01346.x. PMID: 21323666. PMCID: PMC3077525.
Article
27. Wellens HL, Kuijpers-Jagtman AM, Halazonetis DJ. 2013; Geometric morphometric analysis of craniofacial variation, ontogeny and modularity in a cross-sectional sample of modern humans. J Anat. 222:397–409. https://doi.org/10.1111/joa.12027. DOI: 10.1111/joa.12027. PMID: 23425043. PMCID: PMC3610033.
Article
28. Katsadouris A, Halazonetis DJ. 2017; Geometric morphometric analysis of craniofacial growth between the ages of 12 and 14 in normal humans. Eur J Orthod. 39:386–94. https://doi.org/10.1093/ejo/cjw070. DOI: 10.1093/ejo/cjw070. PMID: 27940444.
Article
29. Zollikofer CP, Ponce De León MS. 2002; Visualizing patterns of craniofacial shape variation in Homo sapiens. Proc Biol Sci. 269:801–7. https://doi.org/10.1098/rspb.2002.1960. DOI: 10.1098/rspb.2002.1960. PMID: 11958711. PMCID: PMC1690963.
Article
30. Bastir M, Rosas A. 2004; Facial heights: evolutionary relevance of postnatal ontogeny for facial orientation and skull morphology in humans and chimpanzees. J Hum Evol. 47:359–81. https://doi.org/10.1016/j.jhevol.2004.08.009. DOI: 10.1016/j.jhevol.2004.08.009. PMID: 15530353.
Article
31. Nielsen IL. 1991; Vertical malocclusions: etiology, development, diagnosis and some aspects of treatment. Angle Orthod. 61:247–60. https://pubmed.ncbi.nlm.nih.gov/1763835/. Erratum in: Angle Orthod 1992;62:87. DOI: 10.1043/0003-3219(1991)061<0247:VMEDDA>2.0.CO;2. PMID: 1763835.
32. Manlove AE, Romeo G, Venugopalan SR. 2020; Craniofacial growth: current theories and influence on management. Oral Maxillofac Surg Clin North Am. 32:167–75. https://doi.org/10.1016/j.coms.2020.01.007. DOI: 10.1016/j.coms.2020.01.007. PMID: 32151371.
Article
33. Enlow DH, Pfister C, Richardson E, Kuroda T. 1982; An analysis of Black and Caucasian craniofacial patterns. Angle Orthod. 52:279–87. https://pubmed.ncbi.nlm.nih.gov/6961829/. DOI: 10.1043/0003-3219(1982)052<0279:AAOBAC>2.0.CO;2. PMID: 6961829.
34. Bastir M, Rosas A, Kuroe K. 2004; Petrosal orientation and mandibular ramus breadth: evidence for an integrated petroso-mandibular developmental unit. Am J Phys Anthropol. 123:340–50. https://doi.org/10.1002/ajpa.10313. DOI: 10.1002/ajpa.10313. PMID: 15022362.
Article
35. Smith RJ, Josell SD. 1984; The plan of the human face: a test of three general concepts. Am J Orthod. 85:103–8. https://doi.org/10.1016/0002-9416(84)90001-0. DOI: 10.1016/0002-9416(84)90001-0. PMID: 6594050.
Article
36. Bastir M, Rosas A. 2005; Hierarchical nature of morphological integration and modularity in the human posterior face. Am J Phys Anthropol. 128:26–34. https://doi.org/10.1002/ajpa.20191. DOI: 10.1002/ajpa.20191. PMID: 15778978.
Article
37. Mehta S, Arqub SA, Sharma R, Patel N, Tadinada A, Upadhyay M, et al. 2022; Variability associated with mandibular ramus area thickness and depth in subjects with different growth patterns, gender, and growth status. Am J Orthod Dentofacial Orthop. 161:e223–34. https://doi.org/10.1016/j.ajodo.2021.10.006. DOI: 10.1016/j.ajodo.2021.10.006. PMID: 34802867.
Article
38. Knigge RP, McNulty KP, Oh H, Hardin AM, Leary EV, Duren DL, et al. 2021; Geometric morphometric analysis of growth patterns among facial types. Am J Orthod Dentofacial Orthop. 160:430–41. https://doi.org/10.1016/j.ajodo.2020.04.038. DOI: 10.1016/j.ajodo.2020.04.038. PMID: 34175161. PMCID: PMC8405563.
Article
39. Aki T, Nanda RS, Currier GF, Nanda SK. 1994; Assessment of symphysis morphology as a predictor of the direction of mandibular growth. Am J Orthod Dentofacial Orthop. 106:60–9. https://doi.org/10.1016/S0889-5406(94)70022-2. DOI: 10.1016/S0889-5406(94)70022-2. PMID: 8017351.
Article
40. Alarcón JA, Bastir M, García-Espona I, Menéndez-Núñez M, Rosas A. 2014; Morphological integration of mandible and cranium: orthodontic implications. Arch Oral Biol. 59:22–9. https://doi.org/10.1016/j.archoralbio.2013.10.005. DOI: 10.1016/j.archoralbio.2013.10.005. PMID: 24192112.
Article
41. Enlow DH, DiGangi D, McNamara JA Jr, Mina M. 1988; An evaluation of the morphogenic and anatomic effects of the functional regulator utilizing the counterpart analysis. Eur J Orthod. 10:192–202. https://doi.org/10.1093/ejo/10.3.192. DOI: 10.1093/ejo/10.3.192. PMID: 3181298.
Article
42. Fan Y, Penington A, Kilpatrick N, Hardiman R, Schneider P, Clement J, et al. 2019; Quantification of mandibular sexual dimorphism during adolescence. J Anat. 234:709–17. https://doi.org/10.1111/joa.12949. DOI: 10.1111/joa.12949. PMID: 30834524. PMCID: PMC6481415.
Article
43. Sharma M, Gorea RK, Gorea A, Abuderman A. 2016; A morphometric study of the human mandible in the Indian population for sex determination. Egypt J Forensic Sci. 6:165–9. https://doi.org/10.1016/j.ejfs.2015.01.002. DOI: 10.1016/j.ejfs.2015.01.002. PMID: df5aacfc90f04f129c073c794b316c23.
Article
Full Text Links
  • KJOD
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr