Korean J Orthod.  2023 May;53(3):139-149. 10.4041/kjod22.144.

Effect of orthodontic bonding with different surface treatments on color stability and translucency of full cubic stabilized zirconia after coffee thermocycling

Affiliations
  • 1Dental Sciences Research Center, Department of Orthodontics, School of Dentistry, Guilan University of Medical Sciences, Rasht, Iran
  • 2Dental Sciences Research Center, Department of Prosthodontics, School of Dentistry, Guilan University of Medical Sciences, Rasht, Iran
  • 3Color Imaging and Color Image Processing Department, Institute for Color Science and Technology, Tehran, Iran
  • 4Dental Sciences Research Center, School of Dentistry, Guilan University of Medical Sciences, Rasht, Iran

Abstract


Objective
To assess the color stability and translucency of full cubic stabilized zirconia (FSZ) following orthodontic bonding with different surface treatments and coffee thermocycling (CTC).
Methods
This in vitro study was conducted on 120 disc-shaped specimens of FSZ. Thirty specimens were selected as the control group and remained intact. The remaining specimens were randomly divided into three groups based on the type of surface treatment (n = 30): airborne particle abrasion (APA), silica-coating (CoJet), and carbon dioxide (CO2) laser. After metal bracket bonding in the test groups, debonding and polishing were performed. Subsequently, all specimens underwent CTC (10,000 cycles). Color parameters, color difference (ΔE00), and translucency parameter (TP) were measured three times at baseline (t0), after debonding and polishing (t1), and after CTC (t2). Data were statistically analyzed (α = 0.05).
Results
Significant difference existed among the groups regarding ΔE00t0t2 (p < 0.001). The APA group showed minimum (ΔE00 = 1.15 ± 0.53) and the control group showed maximum (ΔE00 = 0.19 ± 0.02) color stability, with no significant difference between the laser and CoJet groups (p = 0.511). The four groups were significantly different regarding ΔTPt0t2 (p < 0.001). Maximal increases in TP were noted in the CoJet (1.00 ± 0.18) and APA (1.04 ± 0.38) groups while minimal increase was recorded in the control group (0.1 ± 0.02).
Conclusions
Orthodontic treatment makes zirconia restorations susceptible to discoloration and increased translucency. Nonetheless, the recorded ΔE00 and ΔTP did not exceed the acceptability threshold.

Keyword

Y-TZP ceramic; Brackets; Color; Surface treatment

Figure

  • Figure 1 Scanning electron microscopic micrographs of the zirconia surface after different surface treatments. A, Control. B, Airborne particle abrasion. C, CoJet. D, CO2 laser (×500 magnification).

  • Figure 2 Scanning electron microscopic micrographs of the zirconia surface after polishing (A) airborne particle abrasion; (B) CoJet; (C) CO2 laser (×80 magnification).

  • Figure 3 Schematic view of the experimental process. APA, airborne particle abrasion; t0, baseline; t1, after debonding and polishing; t2, after coffee thermocycling.


Reference

1. Subaşı MG, Alp G, Johnston WM, Yilmaz B. 2018; Effects of fabrication and shading technique on the color and translucency of new-generation translucent zirconia after coffee thermocycling. J Prosthet Dent. 120:603–8. https://doi.org/10.1016/j.prosdent.2018.01.018. DOI: 10.1016/j.prosdent.2018.01.018. PMID: 29807744.
Article
2. Asli HN, Rahimabadi S, Falahchai M. 2019; Flexural strength of monolithic zirconia after different surface treatments. World J Dent. 10:264–9. https://doi.org/10.5005/jp-journals-10015-1653. DOI: 10.5005/jp-journals-10015-1653.
Article
3. Babaee Hemmati Y, Neshandar Asli H, Falahchai M, Safary S. 2022; Effect of different surface treatments and orthodontic bracket type on shear bond strength of high-translucent zirconia: an in vitro study. Int J Dent. 2022:9884006. https://doi.org/10.1155/2022/9884006. DOI: 10.1155/2022/9884006. PMID: 35761965. PMCID: PMC9233604. PMID: 91d482e919744efaadb8f3ac43a0aa34.
Article
4. Papageorgiou-Kyrana K, Fasoula M, Kontonasaki E. 2020; Translucency of monolithic zirconia after hydrothermal aging: a review of in vitro studies. J Prosthodont. 29:489–500. https://doi.org/10.1111/jopr.13174. DOI: 10.1111/jopr.13174. PMID: 32275345.
Article
5. Elsaka SE. 2019; Optical and mechanical properties of newly developed monolithic multilayer zirconia. J Prosthodont. 28:e279–84. https://doi.org/10.1111/jopr.12730. DOI: 10.1111/jopr.12730. PMID: 29239067.
Article
6. Babaee Hemmati Y, Neshandar Asil H, Falahchai M, Safari N. 2022; Comparative effects of tungsten, diamond burs and laser for residual adhesive removal after orthodontic debonding on flexural strength, surface roughness and phase transformation of high-translucent zirconia: an in vitro study. Int Orthod. 20:100665. https://doi.org/10.1016/j.ortho.2022.100665. DOI: 10.1016/j.ortho.2022.100665. PMID: 35851494.
Article
7. Kim HK. 2020; Optical and mechanical properties of highly translucent dental zirconia. Materials (Basel). 13:3395. https://doi.org/10.3390/ma13153395. DOI: 10.3390/ma13153395. PMID: 32751942. PMCID: PMC7435650. PMID: 5291091c6c4543b7bc40eb9cc2ab8670.
Article
8. Sulaiman TA, Abdulmajeed AA, Donovan TE, Vallittu PK, Närhi TO, Lassila LV. 2015; The effect of staining and vacuum sintering on optical and mechanical properties of partially and fully stabilized monolithic zirconia. Dent Mater J. 34:605–10. https://doi.org/10.4012/dmj.2015-054. DOI: 10.4012/dmj.2015-054. PMID: 26438983.
Article
9. Turgut S. 2020; Optical properties of currently used zirconia-based esthetic restorations fabricated with different techniques. J Esthet Restor Dent. 32:26–33. https://doi.org/10.1111/jerd.12533. DOI: 10.1111/jerd.12533. PMID: 31596535.
Article
10. Geoghegan F, Birjandi AA, Machado Xavier G, DiBiase AT. 2019; Motivation, expectations and understanding of patients and their parents seeking orthodontic treatment in specialist practice. J Orthod. 46:46–50. https://doi.org/10.1177/1465312518820330. DOI: 10.1177/1465312518820330. PMID: 31056062.
Article
11. Abuelenain DA, Linjawi AI, Alghamdi AS, Alsadi FM. 2021; The effect of various mechanical and chemical surface conditioning on the bonding of orthodontic brackets to all ceramic materials. J Dent Sci. 16:370–4. https://doi.org/10.1016/j.jds.2020.02.003. DOI: 10.1016/j.jds.2020.02.003. PMID: 33384822. PMCID: PMC7770247.
Article
12. Arif R, Yilmaz B, Johnston WM. 2019; In vitro color stainability and relative translucency of CAD-CAM restorative materials used for laminate veneers and complete crowns. J Prosthet Dent. 122:160–6. https://doi.org/10.1016/j.prosdent.2018.09.011. DOI: 10.1016/j.prosdent.2018.09.011. PMID: 30885587.
Article
13. Alp G, Subasi MG, Johnston WM, Yilmaz B. 2018; Effect of surface treatments and coffee thermocycling on the color and translucency of CAD-CAM monolithic glass-ceramic. J Prosthet Dent. 120:263–8. https://doi.org/10.1016/j.prosdent.2017.10.024. DOI: 10.1016/j.prosdent.2017.10.024. PMID: 29551378.
Article
14. Mokhtarpur H, Nafisifard M, Dadgar S, Etemadi A, Chiniforush N, Sobouti F. 2020; Shear bond strength of the metal bracket to zirconium ceramic restoration treated by the Nd: YAG laser and other methods: an in vitro microscopic study. J Lasers Med Sci. 11:411–6. https://doi.org/10.34172/jlms.2020.65. DOI: 10.34172/jlms.2020.65. PMID: 33425291. PMCID: PMC7736933.
Article
15. Ameli N, Talaei R, Saeedi S, Ghorbani R, Askari BA. 2019; Effect of two polishing systems on color and surface roughness of feldspathic porcelain following orthodontic bracket debonding and composite resin removal. APOS Trends Orthod. 9:105–10. https://doi.org/10.25259/APOS-11-2019. DOI: 10.25259/APOS-11-2019.
Article
16. Cetik S, Ha TH, Sitri L, Duterme H, Pham V, Atash R. 2019; Comparison of shear strength of metal and ceramic orthodontic brackets cemented to zirconia depending on surface treatment: an in vitro study. Eur J Dent. 13:150–5. https://doi.org/10.1055/s-0039-1694304. DOI: 10.1055/s-0039-1694304. PMID: 31450247. PMCID: PMC6777170.
Article
17. Queiróz Tavares ML, Elias CN, Nojima LI. 2018; Effects of different primers on indirect orthodontic bonding: shear bond strength, color change, and enamel roughness. Korean J Orthod. 48:245–52. https://doi.org/10.4041/kjod.2018.48.4.245. DOI: 10.4041/kjod.2018.48.4.245. PMID: 30003058. PMCID: PMC6041458.
Article
18. Trakyali G, Ozdemir FI, Arun T. 2009; Enamel colour changes at debonding and after finishing procedures using five different adhesives. Eur J Orthod. 31:397–401. https://doi.org/10.1093/ejo/cjp023. DOI: 10.1093/ejo/cjp023. PMID: 19460855.
Article
19. Gorucu-Coskuner H, Atik E, Taner T. 2018; Tooth color change due to different etching and debonding procedures. Angle Orthod. 88:779–84. https://doi.org/10.2319/122017-872.1. DOI: 10.2319/122017-872.1. PMID: 30080125. PMCID: PMC8174081.
Article
20. Ye C, Zhao Z, Zhao Q, Du X, Ye J, Wei X. 2013; Comparison of enamel discoloration associated with bonding with three different orthodontic adhesives and cleaning-up with four different procedures. J Dent. 41 Suppl 5:e35–40. https://doi.org/10.1016/j.jdent.2013.07.012. DOI: 10.1016/j.jdent.2013.07.012. PMID: 23907086.
Article
21. Zaher AR, Abdalla EM, Abdel Motie MA, Rehman NA, Kassem H, Athanasiou AE. 2012; Enamel colour changes after debonding using various bonding systems. J Orthod. 39:82–8. https://doi.org/10.1179/1465312512Z.0000000009. DOI: 10.1179/1465312512Z.0000000009. PMID: 22773670.
Article
22. Boncuk Y, Cehreli ZC, Polat-Özsoy Ö. 2014; Effects of different orthodontic adhesives and resin removal techniques on enamel color alteration. Angle Orthod. 84:634–41. https://doi.org/10.2319/060613-433.1. DOI: 10.2319/060613-433.1. PMID: 24313735. PMCID: PMC8650448.
Article
23. Kaya Y, Alkan Ö, Değirmenci A, Keskin S. 2018; Long-term follow-up of enamel color changes after treatment with fixed orthodontic appliances. Am J Orthod Dentofacial Orthop. 154:213–20. https://doi.org/10.1016/j.ajodo.2017.11.032. DOI: 10.1016/j.ajodo.2017.11.032. PMID: 30075923.
Article
24. Joo HJ, Lee YK, Lee DY, Kim YJ, Lim YK. 2011; Influence of orthodontic adhesives and clean-up procedures on the stain susceptibility of enamel after debonding. Angle Orthod. 81:334–40. https://doi.org/10.2319/062610-350.1. DOI: 10.2319/062610-350.1. PMID: 21208088. PMCID: PMC8925249.
Article
25. Moradinezhad M, Moradi M, Shamohammadi M, Hormozi E, Ghorani A. 2018; Porcelain color alteration after orthodontic bonding using three different surface preparation methods. Dent Res J (Isfahan). 15:180–4. https://doi.org/10.4103/1735-3327.231860. DOI: 10.4103/1735-3327.231860. PMID: 29922336. PMCID: PMC5958534. PMID: b4fca990dc76446cb689206e5caccb3b.
Article
26. Jarvis J, Zinelis S, Eliades T, Bradley TG. 2006; Porcelain surface roughness, color and gloss changes after orthodontic bonding. Angle Orthod. 76:274–7. https://pubmed.ncbi.nlm.nih.gov/16539553/. DOI: 10.1043/0003-3219(2006)076[0274:PSRCAG]2.0.CO;2. PMID: 16539553.
27. Herion DT, Ferracane JL, Covell DA Jr. 2010; Porcelain surface alterations and refinishing after use of two orthodontic bonding methods. Angle Orthod. 80:167–74. https://doi.org/10.2319/010909-19.1. DOI: 10.2319/010909-19.1. PMID: 19852657. PMCID: PMC8978724.
Article
28. García-Sanz V, Paredes-Gallardo V, Bellot-Arcís C, Mendoza-Yero O, Doñate-Buendía C, Montero J, et al. 2017; Effects of femtosecond laser and other surface treatments on the bond strength of metallic and ceramic orthodontic brackets to zirconia. PLoS One. 12:e0186796. https://doi.org/10.1371/journal.pone.0186796. DOI: 10.1371/journal.pone.0186796. PMID: 29049418. PMCID: PMC5648233. PMID: 79c64048ffa34d4e89854b4c41beb3c0.
Article
29. Jahandideh Y, Falahchai M, Pourkhalili H. 2020; Effect of surface treatment with Er:YAG and CO2 lasers on shear bond strength of polyether ether ketone to composite resin veneers. J Lasers Med Sci. 11:153–9. https://doi.org/10.34172/jlms.2020.26. DOI: 10.34172/jlms.2020.26. PMID: 32273956. PMCID: PMC7118504.
Article
30. Bitencourt SB, Ferreira LC, Mazza LC, Dos Santos DM, Pesqueira AA, Theodoro LH. 2021; Effect of laser irradiation on bond strength between zirconia and resin cement or veneer ceramic: a systematic review and meta-analysis. J Indian Prosthodont Soc. 21:125–37. https://doi.org/10.4103/jips.jips_590_20. DOI: 10.4103/jips.jips_590_20. PMID: 33938862. PMCID: PMC8262443.
Article
31. Aljanobi G, Al-Sowygh ZH. 2020; The effect of thermocycling on the translucency and color stability of modified glass ceramic and multilayer zirconia materials. Cureus. 12:e6968. https://doi.org/10.7759/cureus.6968. DOI: 10.7759/cureus.6968. PMID: 32190514. PMCID: PMC7067582.
Article
32. Sigilião LC, Marquezan M, Elias CN, Ruellas AC, Sant'Anna EF. 2015; Efficiency of different protocols for enamel clean-up after bracket debonding: an in vitro study. Dental Press J Orthod. 20:78–85. https://doi.org/10.1590/2177-6709.20.5.078-085.oar. DOI: 10.1590/2177-6709.20.5.078-085.oar. PMID: 26560825. PMCID: PMC4644923. PMID: 4f072f76a56445d38000c588e453a97e.
Article
33. Zeighami S, Mirmohammadrezaei S, Safi M, Falahchai SM. 2017; The effect of core and veneering design on the optical properties of polyether ether ketone. Eur J Prosthodont Restor Dent. 25:201–8. https://doi.org/10.1922/EJPRD_01720Zeighami08. DOI: 10.1922/EJPRD_01720Zeighami08. PMID: 29182213.
Article
34. Paravina RD, Ghinea R, Herrera LJ, Bona AD, Igiel C, Linninger M, et al. 2015; Color difference thresholds in dentistry. J Esthet Restor Dent. 27 Suppl 1:S1–9. https://doi.org/10.1111/jerd.12149. DOI: 10.1111/jerd.12149. PMID: 25886208.
Article
35. Salas M, Lucena C, Herrera LJ, Yebra A, Della Bona A, Pérez MM. 2018; Translucency thresholds for dental materials. Dent Mater. 34:1168–74. https://doi.org/10.1016/j.dental.2018.05.001. DOI: 10.1016/j.dental.2018.05.001. PMID: 29764698.
Article
36. Tuncer NI, Pamukcu H, Polat-Ozsoy O. 2018; Effects of repeated bracket bonding on enamel color changes. Niger J Clin Pract. 21:1093–7. https://pubmed.ncbi.nlm.nih.gov/30156191/. DOI: 10.4103/njcp.njcp_252_17. PMID: 29735863.
37. Al-Zordk W, Saker S. 2020; Impact of sintering procedure and clinical adjustment on color stability and translucency of translucent zirconia. J Prosthet Dent. 124:788.e1–9. https://doi.org/10.1016/j.prosdent.2020.05.024. DOI: 10.1016/j.prosdent.2020.05.024. PMID: 33121823.
Article
38. Kurtulmus-Yilmaz S, Önöral Ö, Aktore H, Ozan O. 2020; Does the application of surface treatments in different sintering stages affect flexural strength and optical properties of zirconia? J Esthet Restor Dent. 32:81–90. https://doi.org/10.1111/jerd.12552. DOI: 10.1111/jerd.12552. PMID: 31774243.
Article
39. Wang H, Xiong F, Zhenhua L. 2011; Influence of varied surface texture of dentin porcelain on optical properties of porcelain specimens. J Prosthet Dent. 105:242–8. https://doi.org/10.1016/S0022-3913(11)60039-5. DOI: 10.1016/S0022-3913(11)60039-5. PMID: 21458649.
Article
40. Kim HK, Kim SH, Lee JB, Ha SR. 2016; Effects of surface treatments on the translucency, opalescence, and surface texture of dental monolithic zirconia ceramics. J Prosthet Dent. 115:773–9. https://doi.org/10.1016/j.prosdent.2015.11.020. DOI: 10.1016/j.prosdent.2015.11.020. PMID: 26809221.
Article
41. Karan S, Toroglu MS. 2008; Porcelain refinishing with two different polishing systems after orthodontic debonding. Angle Orthod. 78:947–53. https://doi.org/10.2319/081307-374.1. DOI: 10.2319/081307-374.1. PMID: 18298209.
Article
Full Text Links
  • KJOD
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2025 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr