1. Mukund K, Subramaniam S. 2020; Skeletal muscle: a review of molecular structure and function, in health and disease. Wiley Interdiscip Rev Syst Biol Med. 12:e1462. DOI:
10.1002/wsbm.1462. PMID:
31407867. PMCID:
PMC6916202.
Article
2. Chal J, Pourquié O. 2017; Making muscle: skeletal myogenesis in vivo and in vitro. Development. 144:2104–2122. DOI:
10.1242/dev.151035. PMID:
28634270.
5. Guerin CM, Kramer SG. 2009; Cytoskeletal remodeling during myotube assembly and guidance: coordinating the actin and microtubule networks. Commun Integr Biol. 2:452–457. DOI:
10.4161/cib.2.5.9158. PMID:
19907716. PMCID:
PMC2775249.
9. Nguyen NU, Liang VR, Wang HV. 2014; Actin-associated protein palladin is required for migration behavior and differentiation potential of C2C12 myoblast cells. Biochem Biophys Res Commun. 452:728–733. DOI:
10.1016/j.bbrc.2014.08.143. PMID:
25194811.
Article
11. Nguyen MT, Min KH, Kim D, Park SY, Lee W. 2020; CFL2 is an essential mediator for myogenic differentiation in C2C12 myoblasts. Biochem Biophys Res Commun. 533:710–716. DOI:
10.1016/j.bbrc.2020.11.016. PMID:
33187645.
Article
12. Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M, Zanconato F, Le Digabel J, Forcato M, Bicciato S, Elvassore N, Piccolo S. 2011; Role of YAP/TAZ in mechanotransduction. Nature. 474:179–183. DOI:
10.1038/nature10137. PMID:
21654799.
Article
13. Aragona M, Panciera T, Manfrin A, Giulitti S, Michielin F, Elvassore N, Dupont S, Piccolo S. 2013; A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors. Cell. 154:1047–1059. DOI:
10.1016/j.cell.2013.07.042. PMID:
23954413.
Article
14. Nguyen MT, Won YH, Kwon TW, Lee W. 2022; Twinfilin-1 is an essential regulator of myogenic differentiation through the modulation of YAP in C2C12 myoblasts. Biochem Biophys Res Commun. 599:17–23. DOI:
10.1016/j.bbrc.2022.02.021. PMID:
35168059.
Article
15. Saliminejad K, Khorram Khorshid HR, Soleymani Fard S, Ghaffari SH. 2019; An overview of microRNAs: biology, functions, therapeutics, and analysis methods. J Cell Physiol. 234:5451–5465. DOI:
10.1002/jcp.27486. PMID:
30471116.
Article
18. Sannicandro AJ, Soriano-Arroquia A, Goljanek-Whysall K. 2019; Micro(RNA)-managing muscle wasting. J Appl Physiol (1985). 127:619–632. Erratum in:
J Appl Physiol (1985). 2019;127:1502. DOI:
10.1152/japplphysiol.00961.2018. PMID:
30991011.
Article
20. Xia W, Ni J, Zhuang J, Qian L, Wang P, Wang J. 2016; MiR-103 regulates hepatocellular carcinoma growth by targeting AKAP12. Int J Biochem Cell Biol. 71:1–11. DOI:
10.1016/j.biocel.2015.11.017. PMID:
26646106.
Article
21. 2017; Correction: miR-103/107 promote metastasis of colorectal cancer by targeting the metastasis suppressors DAPK and KLF4. Cancer Res. 77:6788. Erratum for:
Cancer Res. 2012;72:3631-3641. DOI:
10.1158/0008-5472.CAN-12-0667. PMID:
22593189.
23. Trajkovski M, Hausser J, Soutschek J, Bhat B, Akin A, Zavolan M, Heim MH, Stoffel M. 2011; MicroRNAs 103 and 107 regulate insulin sensitivity. Nature. 474:649–653. DOI:
10.1038/nature10112. PMID:
21654750.
Article
25. Rottiers V, Näär AM. 2012; MicroRNAs in metabolism and metabolic disorders. Nat Rev Mol Cell Biol. 13:239–250. Erratum in:
Nat Rev Mol Cell Biol. 2012;13:1. DOI:
10.1038/nrm3313. PMID:
22436747. PMCID:
PMC4021399.
Article
26. Cui X, You L, Zhu L, Wang X, Zhou Y, Li Y, Wen J, Xia Y, Wang X, Ji C, Guo X. 2018; Change in circulating microRNA profile of obese children indicates future risk of adult diabetes. Metabolism. 78:95–105. DOI:
10.1016/j.metabol.2017.09.006. PMID:
28966078.
Article
27. Xu Q, Li Y, Shang YF, Wang HL, Yao MX. 2015; miRNA-103: molecular link between insulin resistance and nonalcoholic fatty liver disease. World J Gastroenterol. 21:511–516. DOI:
10.3748/wjg.v21.i2.511. PMID:
25593466. PMCID:
PMC4292282.
Article
28. Yamamoto H, Morino K, Nishio Y, Ugi S, Yoshizaki T, Kashiwagi A, Maegawa H. 2012; MicroRNA-494 regulates mitochondrial biogenesis in skeletal muscle through mitochondrial transcription factor A and Forkhead box j3. Am J Physiol Endocrinol Metab. 303:E1419–E1427. DOI:
10.1152/ajpendo.00097.2012. PMID:
23047984.
Article
29. Pike LS, Smift AL, Croteau NJ, Ferrick DA, Wu M. 2011; Inhibition of fatty acid oxidation by etomoxir impairs NADPH production and increases reactive oxygen species resulting in ATP depletion and cell death in human glioblastoma cells. Biochim Biophys Acta. 1807:726–734. DOI:
10.1016/j.bbabio.2010.10.022. PMID:
21692241.
Article
32. Whitfield ML, George LK, Grant GD, Perou CM. 2006; Common markers of proliferation. Nat Rev Cancer. 6:99–106. DOI:
10.1038/nrc1802. PMID:
16491069.
Article
34. Poukkula M, Kremneva E, Serlachius M, Lappalainen P. 2011; Actin-depolymerizing factor homology domain: a conserved fold performing diverse roles in cytoskeletal dynamics. Cytoskeleton (Hoboken). 68:471–490. DOI:
10.1002/cm.20530. PMID:
21850706.
Article
35. Palmgren S, Vartiainen M, Lappalainen P. 2002; Twinfilin, a molecular mailman for actin monomers. J Cell Sci. 115(Pt 5):881–886. DOI:
10.1242/jcs.115.5.881. PMID:
11870207.
Article
36. Johnston AB, Collins A, Goode BL. 2015; High-speed depolymerization at actin filament ends jointly catalysed by Twinfilin and Srv2/CAP. Nat Cell Biol. 17:1504–1511. DOI:
10.1038/ncb3252. PMID:
26458246. PMCID:
PMC4808055.
Article
37. Hakala M, Wioland H, Tolonen M, Kotila T, Jegou A, Romet-Lemonne G, Lappalainen P. 2021; Twinfilin uncaps filament barbed ends to promote turnover of lamellipodial actin networks. Nat Cell Biol. 23:147–159. Erratum in:
Nat Cell Biol. 2021;23:437-438. DOI:
10.1038/s41556-020-00629-y. PMID:
33558729.
Article
38. Xie H, Lim B, Lodish HF. 2009; MicroRNAs induced during adipogenesis that accelerate fat cell development are downregulated in obesity. Diabetes. 58:1050–1057. DOI:
10.2337/db08-1299. PMID:
19188425. PMCID:
PMC2671055.
Article