3. Gregg EW, Williams DE, Geiss L. 2014; Changes in diabetes-related complications in the United States. N Engl J Med. 371:286–287. DOI:
10.1056/NEJMc1406009. PMID:
25014698.
Article
4. Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, Mattheus M, Devins T, Johansen OE, Woerle HJ, Broedl UC, Inzucchi SE. EMPA-REG OUTCOME Investigators. 2015; Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 373:2117–2128. DOI:
10.1056/NEJMoa1504720. PMID:
26378978.
Article
5. Neal B, Perkovic V, Matthews DR. 2017; Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 377:2099. DOI:
10.1056/NEJMc1712572. PMID:
29166232.
Article
6. Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A, Silverman MG, Zelniker TA, Kuder JF, Murphy SA, Bhatt DL, Leiter LA, McGuire DK, Wilding JPH, Ruff CT, Gause-Nilsson IAM, Fredriksson M, Johansson PA, Langkilde AM, Sabatine MS. DECLARE-TIMI 58 Investigators. 2019; Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 380:347–357. DOI:
10.1056/NEJMoa1812389. PMID:
30415602.
Article
7. Perkovic V, Jardine MJ, Neal B, Bompoint S, Heerspink HJL, Charytan DM, Edwards R, Agarwal R, Bakris G, Bull S, Cannon CP, Capuano G, Chu PL, de Zeeuw D, Greene T, Levin A, Pollock C, Wheeler DC, Yavin Y, Zhang H, et al. CREDENCE Trial Investigators. 2019; Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med. 380:2295–2306. DOI:
10.1056/NEJMoa1811744. PMID:
30990260.
Article
10. Yuan G, Shi S, Jia Q, Shi J, Shi S, Zhang X, Shou X, Zhu X, Hu Y. 2021; Use of network pharmacology to explore the mechanism of gegen (
Puerariae lobatae Radix) in the treatment of type 2 diabetes mellitus associated with hyperlipidemia. Evid Based Complement Alternat Med. 2021:6633402. DOI:
10.1155/2021/6633402. PMID:
33953784. PMCID:
PMC8068526.
11. Wang S, Zhang S, Wang S, Gao P, Dai L. 2020; A comprehensive review on
Pueraria: insights on its chemistry and medicinal value. Biomed Pharmacother. 131:110734. DOI:
10.1016/j.biopha.2020.110734. PMID:
32942158.
12. Jiang Z, Cui X, Qu P, Shang C, Xiang M, Wang J. 2022; Roles and mechanisms of puerarin on cardiovascular disease: a review. Biomed Pharmacother. 147:112655. DOI:
10.1016/j.biopha.2022.112655. PMID:
35066299.
13. Cansby E, Caputo M, Gao L, Kulkarni NM, Nerstedt A, Ståhlman M, Borén J, Porosk R, Soomets U, Pedrelli M, Parini P, Marschall HU, Nyström J, Howell BW, Mahlapuu M. 2020; Depletion of protein kinase STK25 ameliorates renal lipotoxicity and protects against diabetic kidney disease. JCI Insight. 5:e140483. DOI:
10.1172/jci.insight.140483. PMID:
33170807. PMCID:
PMC7819747.
Article
14. Terami N, Ogawa D, Tachibana H, Hatanaka T, Wada J, Nakatsuka A, Eguchi J, Horiguchi CS, Nishii N, Yamada H, Takei K, Makino H. 2014; Long-term treatment with the sodium glucose cotransporter 2 inhibitor, dapagliflozin, ameliorates glucose homeostasis and diabetic nephropathy in db/db mice. PLoS One. 9:e100777. DOI:
10.1371/journal.pone.0100777. PMID:
24960177. PMCID:
PMC4069074. PMID:
95f390caebe0425d811aad5116700659.
Article
15. Hatanaka T, Ogawa D, Tachibana H, Eguchi J, Inoue T, Yamada H, Takei K, Makino H, Wada J. 2016; Inhibition of SGLT2 alleviates diabetic nephropathy by suppressing high glucose-induced oxidative stress in type 1 diabetic mice. Pharmacol Res Perspect. 4:e00239. DOI:
10.1002/prp2.239. PMID:
28116093. PMCID:
PMC5242174.
Article
17. You HS, Shin SJ, Kim J, Kang HT. 2021; Statin use and incidence of chronic kidney disease in hypercholesterolemia patients with normal renal function. Am J Nephrol. 52:940–948. DOI:
10.1159/000520532. PMID:
34864729.
Article
18. Wan XM, Chen J, Wang M, Zheng C, Zhou XL. 2021; Puerarin attenuates cadmium-induced hepatic lipid metabolism disorder by inhibiting oxidative stress and inflammation in mice. J Inorg Biochem. 222:111521. DOI:
10.1016/j.jinorgbio.2021.111521. PMID:
34171769.
Article
20. Zhu Q, Yang S, Wei C, Lu G, Lee K, He JC, Liu R, Zhong Y. 2022; Puerarin attenuates diabetic kidney injury through interaction with Guanidine nucleotide-binding protein Gi subunit alpha-1 (Gnai1) subunit. J Cell Mol Med. 26:3816–3827. DOI:
10.1111/jcmm.17414. PMID:
35678269. PMCID:
PMC9279604.
Article
21. Xu X, Chen B, Huang Q, Wu Y, Liang T. 2020; The effects of puerarin on autophagy through regulating of the PERK/eIF2α/ATF4 signaling pathway influences renal function in diabetic nephropathy. Diabetes Metab Syndr Obes. 13:2583–2592. DOI:
10.2147/DMSO.S256457. PMID:
32765037. PMCID:
PMC7381766.
22. Tauber P, Sinha F, Berger RS, Gronwald W, Dettmer K, Kuhn M, Trum M, Maier LS, Wagner S, Schweda F. 2021; Empagliflozin reduces renal hyperfiltration in response to uninephrectomy, but is not nephroprotective in UNx/DOCA/Salt mouse models. Front Pharmacol. 12:761855. DOI:
10.3389/fphar.2021.761855. PMID:
34992532. PMCID:
PMC8724563. PMID:
425b5cc5bd5d407aabe01f2b4f8ecc5e.
Article
23. Locatelli M, Zoja C, Conti S, Cerullo D, Corna D, Rottoli D, Zanchi C, Tomasoni S, Remuzzi G, Benigni A. 2022; Empagliflozin protects glomerular endothelial cell architecture in experimental diabetes through the VEGF-A/caveolin-1/PV-1 signaling pathway. J Pathol. 256:468–479. DOI:
10.1002/path.5862. PMID:
35000230.
Article
24. Alkabbani W, Zongo A, Minhas-Sandhu JK, Eurich DT, Shah BR, Alsabbagh MW, Gamble JM. 2021; Renal effectiveness and safety of the sodium-glucose cotransporter-2 inhibitors: a population-based cohort study. BMJ Open Diabetes Res Care. 9:e002496. DOI:
10.1136/bmjdrc-2021-002496. PMID:
34906925. PMCID:
PMC8671915.
Article
25. Yang L, Liang B, Li J, Zhang X, Chen H, Sun J, Zhang Z. 2022; Dapagliflozin alleviates advanced glycation end product induced podocyte injury through AMPK/mTOR mediated autophagy pathway. Cell Signal. 90:110206. DOI:
10.1016/j.cellsig.2021.110206. PMID:
34856357.
Article
26. Chun KJ, Jung HH. 2021; SGLT2 inhibitors and kidney and cardiac outcomes according to estimated GFR and albuminuria levels: a meta-analysis of randomized controlled trials. Kidney Med. 3:732–744.e1. DOI:
10.1016/j.xkme.2021.04.009. PMID:
34746739. PMCID:
PMC8551546.
Article
27. Jeon YD, Lee JH, Lee YM, Kim DK. 2020; Puerarin inhibits inflammation and oxidative stress in dextran sulfate sodium-induced colitis mice model. Biomed Pharmacother. 124:109847. DOI:
10.1016/j.biopha.2020.109847. PMID:
31981944.
Article
28. Li X, Cai W, Lee K, Liu B, Deng Y, Chen Y, Zhang X, He JC, Zhong Y. 2017; Puerarin attenuates diabetic kidney injury through the suppression of NOX4 expression in podocytes. Sci Rep. 7:14603. DOI:
10.1038/s41598-017-14906-8. PMID:
29097815. PMCID:
PMC5668268.
Article
29. Zhang Y, Yang X, Ge X, Zhang F. 2019; Puerarin attenuates neurological deficits via Bcl-2/Bax/cleaved caspase-3 and Sirt3/SOD2 apoptotic pathways in subarachnoid hemorrhage mice. Biomed Pharmacother. 109:726–733. DOI:
10.1016/j.biopha.2018.10.161. PMID:
30551525.
Article
30. Xiao L, Zhong M, Huang Y, Zhu J, Tang W, Li D, Shi J, Lu A, Yang H, Geng D, Li H, Wang Z. 2020; Puerarin alleviates osteoporosis in the ovariectomy-induced mice by suppressing osteoclastogenesis via inhibition of TRAF6/ROS-dependent MAPK/NF-κB signaling pathways. Aging (Albany NY). 12:21706–21729. DOI:
10.18632/aging.103976. PMID:
33176281. PMCID:
PMC7695364.
Article