2. inak N Sr. 2020; The study of unclaimed and unidentified bodies management in Thailand and other countries. J Thai Justice Syst. 13:139–52.
3. Evert L. 2011. Unidentified bodies in forensic pathology practice in South Africa: demographic and medico-legal perspectives [thesis]. University of Pretoria;Hatfield:
4. National Missing and Unidentified Persons System. 2022. The nation's silent mass disaster [Internet]. National Institute of Justice;Washington, D.C.: Available from:
https://namus.nij.ojp.gov/. cited 2022 Oct 29.
6. Hermetet C, Saint-Martin P, Gambier A, Ribier L, Sautenet B, Rérolle C. 2018; Forensic age estimation using computed tomography of the medial clavicular epiphysis: a systematic review. Int J Legal Med. 132:1415–25. DOI:
10.1007/s00414-018-1847-z. PMID:
29713801.
Article
7. Shirley NR. 2009. Age and sex estimation from the human clavicle: an investigation of traditional and novel methods [PhD dissertation]. University of Tennessee;Knoxville:
8. Schulz R, Mühler M, Mutze S, Schmidt S, Reisinger W, Schmeling A. 2005; Studies on the time frame for ossification of the medial epiphysis of the clavicle as revealed by CT scans. Int J Legal Med. 119:142–5. DOI:
10.1007/s00414-005-0529-9. PMID:
15711799.
Article
9. Marera DO, Satyapal KS. 2018; Fusion of the medial clavicular epiphysis in the South African and Kenyan populations. Int J Morphol. 36:1101–7. DOI:
10.4067/S0717-95022018000301101.
Article
10. Milenkovic P, Djukic K, Djonic D, Milovanovic P, Djuric M. 2013; Skeletal age estimation based on medial clavicle--a test of the method reliability. Int J Legal Med. 127:667–76. DOI:
10.1007/s00414-012-0791-6. PMID:
23329360.
Article
12. Kranioti EF, Bonicelli A, García-Donas JG. 2019; Bone-mineral density: clinical significance, methods of quantification and forensic applications. Res Rep Forensic Med Sci. 9:9–21. DOI:
10.2147/RRFMS.S164933.
13. Rowe P, Koller A, Sharma S. 2022. Physiology, bone remodeling. StatPearls. StatPearls Publishing;Treasure Island: DOI:
10.2147/rrfms.s164933.
14. Seeman E, Delmas PD. 2006; Bone quality--the material and structural basis of bone strength and fragility. N Engl J Med. 354:2250–61. DOI:
10.1056/NEJMra053077. PMID:
16723616.
Article
15. Li Y, Huang Z, Dong X, Liang W, Xue H, Zhang L, Zhang Y, Deng Z. 2019; Forensic age estimation for pelvic X-ray images using deep learning. Eur Radiol. 29:2322–9. DOI:
10.1007/s00330-018-5791-6. PMID:
30402703.
Article
17. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. 2015. Going deeper with convolutions. Paper presented at: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2015 Jun 7-12; Boston, USA. p. 1–9. DOI:
10.1109/CVPR.2015.7298594.
Article
18. Benito M, Sánchez JA, Codinha S. 2014; Age-at-death estimation based on radiological and image analysis methods in clavicle in a current Spanish population. Int J Legal Med. 128:523–33. DOI:
10.1007/s00414-014-0989-x. PMID:
24664396.
Article
19. Chantharawetchakun T, Vachirawongsakorn V. 2021; Age estimation in the Thai male population using epiphyseal union of the medial clavicle. Chiang Mai Med J. 60:149–55. DOI:
10.12982/CMUMEDJ.2021.13.
Article
20. Schulz R, Mühler M, Reisinger W, Schmidt S, Schmeling A. 2008; Radiographic staging of ossification of the medial clavicular epiphysis. Int J Legal Med. 122:55–8. DOI:
10.1007/s00414-007-0210-6. PMID:
17940787.
Article
21. Schmeling A, Grundmann C, Fuhrmann A, Kaatsch HJ, Knell B, Ramsthaler F, Reisinger W, Riepert T, Ritz-Timme S, Rösing FW, Rötzscher K, Geserick G. 2008; Criteria for age estimation in living individuals. Int J Legal Med. 122:457–60. DOI:
10.1007/s00414-008-0254-2. PMID:
18548266.
Article
22. Subramanian S, Viswanathan VK. 2022. Bone age. StatPearls. StatPearls Publishing;Treasure Island: DOI:
10.1007/s00414-008-0254-2.
25. Navega D, Coelho JD, Cunha E, Curate F. 2018; DXAGE: a new method for age at death estimation based on femoral bone mineral density and artificial neural networks. J Forensic Sci. 63:497–503. DOI:
10.1111/1556-4029.13582. PMID:
28851106.
Article
26. Thurzo A, Kosnáčová HS, Kurilová V, Kosmeľ S, Beňuš R, Moravanský N, Kováč P, Kuracinová KM, Palkovič M, Varga I. 2021; Use of advanced artificial intelligence in forensic medicine, forensic anthropology and clinical anatomy. Healthcare (Basel). 9:1545. DOI:
10.3390/healthcare9111545. PMID:
34828590. PMCID:
PMC8619074. PMID:
d69c6f7f6c6649efaf105ed423b793e0.
Article
27. Guo YC, Han M, Chi Y, Long H, Zhang D, Yang J, Yang Y, Chen T, Du S. 2021; Accurate age classification using manual method and deep convolutional neural network based on orthopantomogram images. Int J Legal Med. 135:1589–97. DOI:
10.1007/s00414-021-02542-x. PMID:
33661340.
Article
29. Chartrand G, Cheng PM, Vorontsov E, Drozdzal M, Turcotte S, Pal CJ, Kadoury S, Tang A. 2017; Deep learning: a primer for radiologists. Radiographics. 37:2113–31. DOI:
10.1148/rg.2017170077. PMID:
29131760.
Article
31. Guan S, Loew M. 2019; Breast cancer detection using synthetic mammograms from generative adversarial networks in convolutional neural networks. J Med Imaging (Bellingham). 6:031411. DOI:
10.1117/1.JMI.6.3.031411. PMID:
30915386. PMCID:
PMC6430964.
Article
32. Wang Y, Zhou L, Wang M, Shao C, Shi L, Yang S, Zhang Z, Feng M, Shan F, Liu L. 2020; Combination of generative adversarial network and convolutional neural network for automatic subcentimeter pulmonary adenocarcinoma classification. Quant Imaging Med Surg. 10:1249–64. DOI:
10.21037/qims-19-982. PMID:
32550134. PMCID:
PMC7276356.
Article
33. Dodge S, Karam L. 2016. Understanding how image quality affects deep neural networks. Paper presented at: 2016 Eighth International Conference on Quality of Multimedia Experience (QoMEX). 2016 Jun 6-8; Lisbon, Portugal. p. 1–6. DOI:
10.1109/QoMEX.2016.7498955.
Article
34. Aggarwal A, Mittal M, Battineni G. 2021; Generative adversarial network: an overview of theory and applications. Int J Inf Manag Data Insights. 1:100004. DOI:
10.1016/j.jjimei.2020.100004.
Article
35. Kazeminia S, Baur C, Kuijper A, van Ginneken B, Navab N, Albarqouni S, Mukhopadhyay A. 2020; GANs for medical image analysis. Artif Intell Med. 109:101938. DOI:
10.1016/j.artmed.2020.101938. PMID:
34756215.
Article