Korean J Physiol Pharmacol.  2023 Mar;27(2):157-165. 10.4196/kjpp.2023.27.2.157.

The expression of Rab5 and its effect on invasion, migration and exosome secretion in triple negative breast cancer

Affiliations
  • 1Departments of Breast and Thyroid Surgery, Xinjiang Medical University Affiliated Tumor Hospital, Urumqi, Xinjiang Province 830000, China
  • 2Departments of Anesthesia and Perioperative Medicine, Xinjiang Medical University Affiliated Tumor Hospital, Urumqi, Xinjiang Province 830000, China

Abstract

Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer and current therapeutic strategies are limited in their effectiveness. The expressions of Rab5 and the M2 tumor-associated macrophage marker CD163 in tissues were detected by Western blot. The migration and invasion of cells were determined using a Transwell assay. The expressions of the exosome markers were evaluated by Western blot. The polarization of human macrophages (THP-1) was determined by incubation of THP-1 cells with conditioned medium or exosomes collected from MDA-MB-231 cells with indicated transfections or by a coculture system of THP-1 and MDA-MB-231 cells. The M1 and M2 macrophage markers were evaluated by qRT-PCR. The expression of Rab5 in TNBC was significantly higher than that in normal breast tissue. Rab5 expressions in triple-negative and luminal A breast cancer were higher than those in other molecular subtypes. Higher CD163 expression was observed in triple-negative breast cancer and in triple-negative and luminal B subtypes. Rab5 knockdown suppressed but Rab5 overexpression promoted the migration and invasion capacity of MDA-MB-231 cells. The levels of CD63 and CD9 in the medium of Rab5 knockdown cells were lower than those in control cells, whereas higher levels of CD63 and CD9 were observed in Rab5 overexpression cells. Rab5 knockdown decreased the excretion but did not alter the diameter of the exosomes. Knockdown of Rab5 facilitated the anti-tumor polarization of macrophages, which was partially reversed by Rab5 overexpression. Therefore, Rab5 is expected to be a potential therapeutic target for triple-negative breast cancer.

Keyword

Exosomes; Rab5 GTP-binding proteins; Triple-negative breast cancer; Tumor-associated macrophages

Figure

  • Fig. 1 The protein level of Rab5 in normal breast tissue (n = 3) and luminal A (n = 4), luminal B (n = 4), Her2+ (n = 4) and triple-negative breast cancer (TNBC) tissues (n = 4). Data was represented as mean ± SD. *p < 0.05 vs. normal tissue.

  • Fig. 2 Knockdown of Rab5 in MDA-MB-231 cells by small interfering RNA. (A) Effect of siRNA concentration and incubation time on transfected with siRNAs (n = 5), cells were stained with Block-iT Alexa Fluor Red, magnification 100×. (B) mRNA level of Rab5 in MDA-MB-231 cells transfected with siRNAs (n = 5). (C) Protein level of Rab5 in MDA-MB-231 cells transfected with siRNAs (n = 3). (D) mRNA and (E) protein levels of Rab5 in MDA-MB-231 cells transfected with empty or Rab5-containing vectors. Data was represented as mean ± SD. *p < 0.05 vs. control.

  • Fig. 3 Migration and invasion capacity of MDA-MB-231 cells transfected with siRab5 (A) or vector containing Rab5 (B), n = 5. Cells were stained with Giemsa in migration and invasion assays, magnification 100×. Data was represented as mean ± SD. *p < 0.05 vs. control.

  • Fig. 4 The protein levels of exosome hallmarks CD63 and CD9 in the supernatant of MDA-MB-231 cells transfected with siRab5 (A) or vector containing Rab5 (B), n = 3. Data was represented as mean ± SD. *p < 0.05 vs. control.

  • Fig. 5 The implication of Rab5 in the polarization of macrophages. (A) Human THP-1 macrophages were treated with conditioned medium, exosomes collected from MDA-MB-231 cells, or were cocultured with MDA-MB-231 cells. The M2 (CD206, IL-10, and CD163) and M1 (iNOS, IL-1β, and TNF-α) markers in THP-1 cells treated with conditioned medium (B) or exosomes (C) or cocultured with MDA-MB-231 cells (D) were determined by qRT-PCR. (E) The expression of M1/M2 macrophage markers in THP-1 cells cocultured with MDA-MB-231 cells with Rab5 overexpression. The mock treatment represents THP-1 cells treated with normal medium alone. Data was represented as mean ± SD. *p < 0.05, **p < 0.001, ***p < 0.0001 vs. mock treatment.


Reference

1. Zubor P, Kubatka P, Kajo K, Dankova Z, Polacek H, Bielik T, Kudela E, Samec M, Liskova A, Vlcakova D, Kulkovska T, Stastny I, Holubekova V, Bujnak J, Laucekova Z, Büsselberg D, Adamek M, Kuhn W, Danko J, Golubnitschaja O. 2019; Why the gold standard approach by mammography demands extension by multiomics? Application of liquid biopsy miRNA profiles to breast cancer disease management. Int J Mol Sci. 20:2878. DOI: 10.3390/ijms20122878. PMID: 31200461. PMCID: PMC6627787. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85068141313&origin=inward.
Article
2. Foulkes WD, Smith IE, Reis-Filho JS. 2010; Triple-negative breast cancer. N Engl J Med. 363:1938–1948. DOI: 10.1056/NEJMra1001389. PMID: 21067385. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=78149483057&origin=inward.
Article
3. Tang W, Xia M, Liao Y, Fang Y, Wen G, Zhong J. 2022; Exosomes in triple negative breast cancer: from bench to bedside. Cancer Lett. 527:1–9. DOI: 10.1016/j.canlet.2021.12.009. PMID: 34902521. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85121006062&origin=inward.
Article
4. Ahmadi M, Rezaie J. 2020; Tumor cells derived-exosomes as angiogenenic agents: possible therapeutic implications. J Transl Med. 18:249. DOI: 10.1186/s12967-020-02426-5. PMID: 32571337. PMCID: PMC7310379. PMID: a888c7c1bef8419eb3b0f370478a74df. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85086947144&origin=inward.
Article
5. Baig MS, Roy A, Rajpoot S, Liu D, Savai R, Banerjee S, Kawada M, Faisal SM, Saluja R, Saqib U, Ohishi T, Wary KK. 2020; Tumor-derived exosomes in the regulation of macrophage polarization. Inflamm Res. 69:435–451. DOI: 10.1007/s00011-020-01318-0. PMID: 32162012. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85081932551&origin=inward.
Article
6. Tzeng HT, Wang YC. 2016; Rab-mediated vesicle trafficking in cancer. J Biomed Sci. 23:70. DOI: 10.1186/s12929-016-0287-7. PMID: 27716280. PMCID: PMC5053131. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84992036211&origin=inward.
Article
7. Kalaidzidis I, Miaczynska M, Brewińska-Olchowik M, Hupalowska A, Ferguson C, Parton RG, Kalaidzidis Y, Zerial M. 2015; APPL endosomes are not obligatory endocytic intermediates but act as stable cargo-sorting compartments. J Cell Biol. 211:123–144. DOI: 10.1083/jcb.201311117. PMID: 26459602. PMCID: PMC4602042. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84980327273&origin=inward.
Article
8. Zeigerer A, Gilleron J, Bogorad RL, Marsico G, Nonaka H, Seifert S, Epstein-Barash H, Kuchimanchi S, Peng CG, Ruda VM, Del Conte-Zerial P, Hengstler JG, Kalaidzidis Y, Koteliansky V, Zerial M. 2012; Rab5 is necessary for the biogenesis of the endolysosomal system in vivo. Nature. 485:465–470. DOI: 10.1038/nature11133. PMID: 22622570. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84861423416&origin=inward.
Article
9. Zhao Z, Liu XF, Wu HC, Zou SB, Wang JY, Ni PH, Chen XH, Fan QS. 2010; Rab5a overexpression promoting ovarian cancer cell proliferation may be associated with APPL1-related epidermal growth factor signaling pathway. Cancer Sci. 101:1454–1462. DOI: 10.1111/j.1349-7006.2010.01558.x. PMID: 20412119. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=77954169426&origin=inward.
Article
10. Piao HY, Guo S, Wang Y, Zhang J. 2021; Exosome-transmitted lncRNA PCGEM1 promotes invasive and metastasis in gastric cancer by maintaining the stability of SNAI1. Clin Transl Oncol. 23:246–256. DOI: 10.1007/s12094-020-02412-9. PMID: 32519176. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85086172545&origin=inward.
Article
11. Ostrowski M, Carmo NB, Krumeich S, Fanget I, Raposo G, Savina A, Moita CF, Schauer K, Hume AN, Freitas RP, Goud B, Benaroch P, Hacohen N, Fukuda M, Desnos C, Seabra MC, Darchen F, Amigorena S, Moita LF, Thery C. 2010; Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol. 12:19–30. sup pp 1–13. DOI: 10.1038/ncb2000. PMID: 19966785. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=79953136097&origin=inward.
Article
12. Frittoli E, Palamidessi A, Marighetti P, Confalonieri S, Bianchi F, Malinverno C, Mazzarol G, Viale G, Martin-Padura I, Garré M, Parazzoli D, Mattei V, Cortellino S, Bertalot G, Di Fiore PP, Scita G. 2014; A RAB5/RAB4 recycling circuitry induces a proteolytic invasive program and promotes tumor dissemination. J Cell Biol. 206:307–328. DOI: 10.1083/jcb.201403127. PMID: 25049275. PMCID: PMC4107781. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84904701296&origin=inward.
Article
13. Mendoza P, Ortiz R, Díaz J, Quest AF, Leyton L, Stupack D, Torres VA. 2013; Rab5 activation promotes focal adhesion disassembly, migration and invasiveness in tumor cells. J Cell Sci. 126(Pt 17):3835–3847. DOI: 10.1242/jcs.119727. PMID: 23813952. PMCID: PMC4074302. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84883306115&origin=inward.
14. Harding CV, Heuser JE, Stahl PD. 2013; Exosomes: looking back three decades and into the future. J Cell Biol. 200:367–371. Erratum in: J Cell Biol. 2013;201:485. DOI: 10.1083/jcb.201212113. PMID: 23420870. PMCID: PMC3575527. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84874354368&origin=inward.
Article
15. Raposo G, Stoorvogel W. 2013; Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol. 200:373–383. DOI: 10.1083/jcb.201211138. PMID: 23420871. PMCID: PMC3575529. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84874377202&origin=inward.
Article
16. Jang JY, Lee JK, Jeon YK, Kim CW. 2013; Exosome derived from epigallocatechin gallate treated breast cancer cells suppresses tumor growth by inhibiting tumor-associated macrophage infiltration and M2 polarization. BMC Cancer. 13:421. DOI: 10.1186/1471-2407-13-421. PMID: 24044575. PMCID: PMC3848851. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84883887202&origin=inward.
Article
17. Kwon Y, Kim M, Kim Y, Jung HS, Jeoung D. 2020; Exosomal MicroRNAs as mediators of cellular interactions between cancer cells and macrophages. Front Immunol. 11:1167. DOI: 10.3389/fimmu.2020.01167. PMID: 32595638. PMCID: PMC7300210. PMID: e432839fcb584aab8cbb7750f24e29a0. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85087034958&origin=inward.
Article
18. Zhou J, Wang XH, Zhao YX, Chen C, Xu XY, Sun Q, Wu HY, Chen M, Sang JF, Su L, Tang XQ, Shi XB, Zhang Y, Yu Q, Yao YZ, Zhang WJ. 2018; Cancer-associated fibroblasts correlate with tumor-associated macrophages infiltration and lymphatic metastasis in triple negative breast cancer patients. J Cancer. 9:4635–4641. DOI: 10.7150/jca.28583. PMID: 30588247. PMCID: PMC6299377. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85059301446&origin=inward.
Article
19. Zhao S, Mi Y, Guan B, Zheng B, Wei P, Gu Y, Zhang Z, Cai S, Xu Y, Li X, He X, Zhong X, Li G, Chen Z, Li D. 2020; Tumor-derived exosomal miR-934 induces macrophage M2 polarization to promote liver metastasis of colorectal cancer. J Hematol Oncol. 13:156. Erratum in: J Hematol Oncol. 2021;14:33. DOI: 10.1186/s13045-021-01042-0. PMID: 33618743. PMCID: PMC7901099. PMID: 9031db18aa254d48a7fb7a969f3ec893. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85101278939&origin=inward.
Article
20. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. 2018; Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. Erratum in: CA Cancer J Clin. 2020;70:313. DOI: 10.3322/caac.21492. PMID: 30207593. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85053395052&origin=inward.
Article
21. Brown M, Tsodikov A, Bauer KR, Parise CA, Caggiano V. 2008; The role of human epidermal growth factor receptor 2 in the survival of women with estrogen and progesterone receptor-negative, invasive breast cancer: the California Cancer Registry, 1999-2004. Cancer. 112:737–747. DOI: 10.1002/cncr.23243. PMID: 18189290. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=39049164069&origin=inward.
Article
22. Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, Sawka CA, Lickley LA, Rawlinson E, Sun P, Narod SA. 2007; Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res. 13(15 Pt 1):4429–4434. DOI: 10.1158/1078-0432.CCR-06-3045. PMID: 17671126. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=34547661993&origin=inward.
Article
23. Shabo I, Stål O, Olsson H, Doré S, Svanvik J. 2008; Breast cancer expression of CD163, a macrophage scavenger receptor, is related to early distant recurrence and reduced patient survival. Int J Cancer. 123:780–786. DOI: 10.1002/ijc.23527. PMID: 18506688. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=47049108919&origin=inward.
Article
24. Logozzi M, De Milito A, Lugini L, Borghi M, Calabrò L, Spada M, Perdicchio M, Marino ML, Federici C, Iessi E, Brambilla D, Venturi G, Lozupone F, Santinami M, Huber V, Maio M, Rivoltini L, Fais S. 2009; High levels of exosomes expressing CD63 and caveolin-1 in plasma of melanoma patients. PLoS One. 4:e5219. DOI: 10.1371/journal.pone.0005219. PMID: 19381331. PMCID: PMC2667632. PMID: 777e9b167fd447db947c5d1cba838ee7. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=65449117971&origin=inward.
Article
25. Li Y, Meng X, Feng H, Zhang G, Liu C, Li P. 1999; Over-expression of the RAB5 gene in human lung adenocarcinoma cells with high metastatic potential. Chin Med Sci J. 14:96–101. PMID: 12901617. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0002925345&origin=inward.
26. Li Y, Feng H, Chen Y. 1999; RAB5A, a gene possibly related to metastasis of human carcinoma of the lung and stomach. Zhonghua Zhong Liu Za Zhi. 21:178–181. Chinese. PMID: 11776829. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0033004429&origin=inward.
27. Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T, Clark L, Bayani N, Coppe JP, Tong F, Speed T, Spellman PT, DeVries S, Lapuk A, Wang NJ, Kuo WL, Stilwell JL, Pinkel D, Albertson DG, Waldman FM, et al. 2006; A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell. 10:515–527. DOI: 10.1016/j.ccr.2006.10.008. PMID: 17157791. PMCID: PMC2730521. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=33845209913&origin=inward.
Article
28. Condeelis J, Pollard JW. 2006; Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell. 124:263–266. DOI: 10.1016/j.cell.2006.01.007. PMID: 16439202. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=31044433663&origin=inward.
Article
29. Kanwar SS, Dunlay CJ, Simeone DM, Nagrath S. 2014; Microfluidic device (ExoChip) for on-chip isolation, quantification and characterization of circulating exosomes. Lab Chip. 14:1891–1900. DOI: 10.1039/C4LC00136B. PMID: 24722878. PMCID: PMC4134440. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84899810743&origin=inward.
Article
30. Gorji-Bahri G, Moghimi HR, Hashemi A. 2021; RAB5A effect on metastasis of hepatocellular carcinoma cell line via altering the pro-invasive content of exosomes. Exp Mol Pathol. 120:104632. DOI: 10.1016/j.yexmp.2021.104632. PMID: 33831402. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85104090083&origin=inward.
Article
31. Gorji-Bahri G, Moghimi HR, Hashemi A. 2021; RAB5A is associated with genes involved in exosome secretion: integration of bioinformatics analysis and experimental validation. J Cell Biochem. 122:425–441. DOI: 10.1002/jcb.29871. PMID: 33225526. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85096808352&origin=inward.
Article
32. Moradi-Chaleshtori M, Hashemi SM, Soudi S, Bandehpour M, Mohammadi-Yeganeh S. 2019; Tumor-derived exosomal microRNAs and proteins as modulators of macrophage function. J Cell Physiol. 234:7970–7982. DOI: 10.1002/jcp.27552. PMID: 30378104. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85055652140&origin=inward.
Article
33. Han C, Zhang C, Wang H, Zhao L. 2021; Exosome-mediated communication between tumor cells and tumor-associated macrophages: implications for tumor microenvironment. Oncoimmunology. 10:1887552. DOI: 10.1080/2162402X.2021.1887552. PMID: 33680573. PMCID: PMC7901554. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85101645642&origin=inward.
Article
34. Pritchard A, Tousif S, Wang Y, Hough K, Khan S, Strenkowski J, Chacko BK, Darley-Usmar VM, Deshane JS. 2020; Lung tumor cell-derived exosomes promote M2 macrophage polarization. Cells. 9:1303. DOI: 10.3390/cells9051303. PMID: 32456301. PMCID: PMC7290460. PMID: 8fa2e48e22c840c49c89b8fe7810c035. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85085538371&origin=inward.
Article
35. Ham S, Lima LG, Chai EPZ, Muller A, Lobb RJ, Krumeich S, Wen SW, Wiegmans AP, Möller A. 2018; Breast cancer-derived exosomes alter macrophage polarization via gp130/STAT3 signaling. Front Immunol. 9:871. DOI: 10.3389/fimmu.2018.00871. PMID: 29867925. PMCID: PMC5951966. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85046620325&origin=inward.
Article
36. Shu Y, Qin M, Song Y, Tang Q, Huang Y, Shen P, Lu Y. 2020; M2 polarization of tumor-associated macrophages is dependent on integrin β3 via peroxisome proliferator-activated receptor-γ up-regulation in breast cancer. Immunology. 160:345–356. DOI: 10.1111/imm.13196. PMID: 32311768. PMCID: PMC7370165. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85084002889&origin=inward.
Article
37. Chanmee T, Ontong P, Konno K, Itano N. 2014; Tumor-associated macrophages as major players in the tumor microenvironment. Cancers (Basel). 6:1670–1690. DOI: 10.3390/cancers6031670. PMID: 25125485. PMCID: PMC4190561. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84920943285&origin=inward.
Article
38. Zhou J, Li X, Wu X, Zhang T, Zhu Q, Wang X, Wang H, Wang K, Lin Y, Wang X. 2018; Exosomes released from tumor-associated macrophages transfer miRNAs that induce a Treg/Th17 cell imbalance in epithelial ovarian cancer. Cancer Immunol Res. 6:1578–1592. DOI: 10.1158/2326-6066.CIR-17-0479. PMID: 30396909. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85057781557&origin=inward.
Article
39. Camussi G, Deregibus MC, Bruno S, Grange C, Fonsato V, Tetta C. 2011; Exosome/microvesicle-mediated epigenetic reprogramming of cells. Am J Cancer Res. 1:98–110. PMID: 21969178. PMCID: PMC3180104.
Full Text Links
  • KJPP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr