1. Srinivasan S, Florez JC. Therapeutic challenges in diabetes prevention: we have not found the “exercise pill”. Clin Pharmacol Ther. 2015; 98(2):162–9.
https://doi.org/10.1002/cpt.146
.
3. Yi JY, Kim Y, Cho YM, Kim H. Self-management of chronic conditions using mHealth interventions in Korea: a systematic review. Healthc Inform Res. 2018; 24(3):187–97.
https://doi.org/10.4258/hir.2018.24.3.187
.
4. Hovareshti P, Roeder S, Holt LS, Gao P, Xiao L, Zalkin C, et al. VestAid: a tablet-based technology for objective exercise monitoring in vestibular rehabilitation. Sensors (Basel). 2021; 21(24):8388.
https://doi.org/10.3390/s21248388
.
5. Chen RC, Chan YK, Chen YH, Bau CT. An automatic drug image identification system based on multiple image features and dynamic weights. Int J Innov Comput Inf Control. 2012; 8(5):2995–3013.
6. Ahmad S, Hasan M, Shahabuddin M, Tabassum T, Allvi MW. IoT based pill reminder and monitoring system. Int J Comput Sci Netw Secur. 2020; 20(7):152–8.
8. Cordeiro LS, Lima JS, Ribeiro AI, Bezerra FN, Reboucas Filho PP, Neto AR. Pill image classification using machine learning. In : Proceedings of 2019, 8th Brazilian Conference on Intelligent Systems (BRACIS); 2019 Oct 15–18; Salvador, Brazil. p. 556–61.
https://doi.org/10.1109/BRACIS.2019.00103
.
9. Yu J, Chen Z, Kamata SI. Pill recognition using imprint information by two-step sampling distance sets. In : Proceedings of 2014, 22nd International Conference on Pattern Recognition; 2014 Aug 24–28; Stockholm, Sweden. p. 3156–61.
https://doi.org/10.1109/ICPR.2014.544
.
10. Chang WJ, Chen LB, Hsu CH, Chen JH, Yang TC, Lin CP. MedGlasses: a wearable smart-glasses-based drug pill recognition system using deep learning for visually impaired chronic patients. IEEE Access. 2020; 8:17013–24.
https://doi.org/10.1109/ACCESS.2020.2967400
.
12. Yaniv Z, Faruque J, Howe S, Dunn K, Sharlip D, Bond A, et al. The national library of medicine pill image recognition challenge: an initial report. In : Proceedings of 2016 IEEE Applied Imagery Pattern Recognition Workshop (AIPR); 2016 Oct 18–20; Washington, DC. p. 1–9.
https://doi.org/10.1109/AIPR.2016.8010584
.
13. Wang Y, Ribera J, Liu C, Yarlagadda S, Zhu F. Pill recognition using minimal labeled data. In : Proceedings of 2017 IEEE 3rd International Conference on Multimedia Big Data (BigMM); 2017 Apr 19–21; Laguna Hills, CA. p. 346–53.
https://doi.org/10.1109/BigMM.2017.61
.
14. Zeng X, Cao K, Zhang M. MobileDeepPill: a small-footprint mobile deep learning system for recognizing unconstrained pill images. In : Proceedings of the 15th Annual International Conference on Mobile Systems, Applications, and Services; 2017 Jun 19–23; Niagara Falls, NY. p. 56–67.
https://doi.org/10.1145/3081333.3081336
.